
EXERCISE #34

1

LINTING REVIEW

Write your name and answer the following on a piece of paper

Give an example of a program that a linter might flag as a problem and explain why it

would do so.

EXERCISE #34: SOLUTION

2

LINTING REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Grades still not done

ADMINISTRIVIA
AND
ANNOUNCEMENTS

EECS 665 Quiz 4

and

EECS 677 Replacement test conflict

ADMINISTRIVIA
AND
ANNOUNCEMENTS

P3 up tonight

BUG ISOLATION
EECS 677: Software Security Evaluation

Drew Davidson

WHERE WE’RE AT

GRAB-BAG TOPICS!

7

8

PREVIOUSLY: SECURE DESIGN
REVIEW LAST LECTURE

DESCRIBED SOME OF THE BEST PRACTICES
IN WRITING SECURE SOFTWARE

• The principle of least privilege / privilege separation

• Simplicity

• Open design

• Defense in depth

• Complete mediation

• Fail safe

9

THIS LECTURE
BUG ISOLATION

ISOLATING CAUSE-EFFECT CHAINS IN
PROGRAM MISBEHAVIOR

Bug

• Why we isolate bugs

• How we isolate bugs

10

FROM DEFECT TO FAILURE
BUG ISOLATION

THE ANATOMY OF A PROBLEM

Step 1. The programmer creates a defect (an error in the code)

Step 3. The infection propagates

Step 2. When executed, the program creates an infection (an

error in the state)

Step 4. The infection causes a failure / exploit We see this

We care about this

11

HOW TO FIX A BUG
BUG ISOLATION

UNWINDING A COMPLEX ISSUE REQUIRES CAREFUL CONSIDERATION

Sufficient logging to detect failure / exploit

Sufficient logging to trace back the propagation

Identification of the defect

Insert

Simplification

12

SIMPLIFICATION
BUG ISOLATION

WHAT PART OF AN INFECTION IS RELEVANT TO THE DEFECT?

• Does the problem really depend on

10,000 lines of input?

• Does the failure really require this exact

schedule?

• Do we need this sequence of calls?

EXPERIMENT-BASED SIMPLIFICATION

- For every aspect of the problem, check whether it is relevant

for the problem to occur.

- If it is not, remove that aspect from the report or test case

13

BUG REPORTS
BUG ISOLATION

IN PRACTICE, EVEN A DEBUG TRACE MIGHT NOT BE AVAILABLE

Consider most open source software – a bug report is likely to

only provide a failing case

14

ACTING ON BUG REPORTS
BUG ISOLATION

ANECDOTE

In 1999 Bugzilla, the bug database for the browser

Firefox, listed more than 370 open bugs

Each bug in the database describes a scenario which

caused software to fail

these scenarios are not simplified

they may contain a lot of irrelevant information

a lot of the bug reports could be equivalent

Overwhelmed with this work Mozilla developers sent

out a call for volunteers

Process the bug reports by producing simplified bug reports

Simplifying means: turning the bug reports into minimal test

cases where every part of the input would be significant in

reproducing the failure

15

MOZILLA ANECDOTE: EXAMPLE
BUG ISOLATION

PRINTING THE FOLLOWING FILE CAUSED FIREFOX TO CRASH

<td align=left valign=top>

<SELECT NAME="op sys" MULTIPLE SIZE=7>

<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows

3.1<OPTION

VALUE="Windows 95">Windows 95<OPTION VALUE="Windows

98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION

VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows

NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION

VALUE="Mac

System 7.5">Mac System 7.5<OPTION VALUE="Mac

System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac

System

8.0<OPTION VALUE="Mac System 8.5">Mac System

8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION

VALUE="Mac System

9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS

X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION

VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION

VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX

<OPTION

VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION

VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION

VALUE="OpenVMS">

OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION

VALUE="OSF/1">OSF/1<OPTION VALUE="Solaris">Solaris<OPTION

VALUE="SunOS">SunOS<OPTION

VALUE="other">other</SELECT></td>

<td align=left valign=top>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION

VALUE="P2">P2<OPTION

VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION

VALUE="P5">P5</SELECT>

</td>

<td align=left valign=top>

<SELECT NAME="bug severity" MULTIPLE SIZE=7>

<OPTION VALUE="blocker">blocker<OPTION

VALUE="critical">critical<OPTION

VALUE="major">major<OPTION

VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION

VALUE="trivial">trivial<OPTION

VALUE="enhancement">enhancement</SELECT>

</tr>

</table>

WHY?

16

CAUSE AND EFFECT
BUG ISOLATION

FREQUENTLY, A SUBSET OF INPUT WILL BE THE CULPRIT AND THE REST IS INCIDENTAL

This circumstance creates both the means and motivation for minimizing test cases

View minimization as a binary search (or at least a reduction of search space)

17

CAUSE AND EFFECT
BUG ISOLATION

1 <SELECT NAME="priority" MULTIPLE SIZE=7> F

2 <SELECT NAME="priority" MULTIPLE SIZE=7> P

3 <SELECT NAME="priority" MULTIPLE SIZE=7> P

4 <SELECT NAME="priority" MULTIPLE SIZE=7> P

5 <SELECT NAME="priority" MULTIPLE SIZE=7> F

6 <SELECT NAME="priority" MULTIPLE SIZE=7> F

7 <SELECT NAME="priority" MULTIPLE SIZE=7> P

8 <SELECT NAME="priority" MULTIPLE SIZE=7> P

9 <SELECT NAME="priority" MULTIPLE SIZE=7> P

10 <SELECT NAME="priority" MULTIPLE SIZE=7> F

11 <SELECT NAME="priority" MULTIPLE SIZE=7> P

12 <SELECT NAME="priority" MULTIPLE SIZE=7> P

13 <SELECT NAME="priority" MULTIPLE SIZE=7> P

14 <SELECT NAME="priority" MULTIPLE SIZE=7> P

15 <SELECT NAME="priority" MULTIPLE SIZE=7> P

16 <SELECT NAME="priority" MULTIPLE SIZE=7> F

17 <SELECT NAME="priority" MULTIPLE SIZE=7> F

18 <SELECT NAME="priority" MULTIPLE SIZE=7> F

19 <SELECT NAME="priority" MULTIPLE SIZE=7> P

20 <SELECT NAME="priority" MULTIPLE SIZE=7> P

21 <SELECT NAME="priority" MULTIPLE SIZE=7> P

22 <SELECT NAME="priority" MULTIPLE SIZE=7> P

23 <SELECT NAME="priority" MULTIPLE SIZE=7> P

24 <SELECT NAME="priority" MULTIPLE SIZE=7> P

25 <SELECT NAME="priority" MULTIPLE SIZE=7> P

26 <SELECT NAME="priority" MULTIPLE SIZE=7> F

18

DELTA DEBUGGING
BUG ISOLATION

WHAT PART OF AN INFECTION IS RELEVANT TO THE DEFECT?

It is very tedious (but highly mechanical) to modify and re-test program aspects

19

DELTA DEBUGGING: NEEDS
BUG ISOLATION

A FAILING TEST CASE AND A PASSING TEST CASE

20

DELTA DEBUGGING: ALGORITHM
BUG ISOLATION

def dd(c_pass, c_fail):

 n = 2

 while true:

 delta = listminus(c_fail, c_pass)

 deltas = split(delta, n); offset = 0; j = 0

 while j < n:

 i = (j + offset) % n

 next_c_pass = listunion(c_pass, deltas[i])

 next_c_fail = listminus(c_fail, deltas[i])

 if test(next_c_fail) == FAIL and n == 2:

 c_fail = next_c_fail; n = 2; offset = 0; break

 elif test(next_c_fail) == PASS:

 c_pass = next_c_fail; n = 2; offset = 0; break

 elif test(next_c_pass) == FAIL:

 c_fail = next_c_pass; n = 2; offset = 0; break

 elif test(next_c_fail) == FAIL:

 c_fail = next_c_fail; n = max(n - 1, 2); offset = i; break

 elif test(next_c_pass) == PASS:

 c_pass = next_c_pass; n = max(n - 1, 2); offset = i; break

 else:

 j = j + 1

 if j >= n:

 if n >= len(delta):

 return (delta, c_pass, c_fail)

 else:

 n = min(len(delta), n * 2)

21

DELTA DEBUGGING: APPLICATIONS
BUG ISOLATION

IT’S NOT JUST FOR MANIPULATING INPUT!

Consider determining bugs caused by…

- Code changes

- Thread interleavings

22

COOPERATIVE BUG ISOLATION
BUG ISOLATION

FAULT LOCALIZATION IS EXPENSIVE!

Much of the logging won’t be useful in the end

Statistically distribute logging across the userbase

Gathering sufficient telemetry slows down programs

KEY IDEA

Good news! Works best in the circumstances where it is most needed

23

COOPERATIVE BUG ISOLATION
BUG ISOLATION

BASIC SCHEME

Adapts the sparse sampling scheme by Arnold and Ryder

Each user records 1% of everything

HOW TO SAMPLE?

check (p != NULL);

p = p->next;

check (i < max);

total += sizes[i];

if (rand(100)== 0){ check (p != NULL); }

p = p->next;

if (rand(100) == 0){ check (i < max); }

total += sizes[i];

One idea: randomize …

… but rand(100) is super expensive!

24

COOPERATIVE BUG ISOLATION
BUG ISOLATION

HOW TO SAMPLE?

check (p != NULL);

p = p->next;

check (i < max);

total += sizes[i];

if (rand(100)== 0){ check (p != NULL); }

p = p->next;

if (rand(100) == 0){ check (i < max); }

total += sizes[i];

… but rand(100) is super expensive!

One idea: randomize …

Another idea: global counter

if (k++ % 100 == 0){ check (p != NULL); }

p = p->next;

if (k++ % 100 == 0){ check (i < max); }

total += sizes[i];

You’ll never get the second check!

25

COOPERATIVE BUG ISOLATION
BUG ISOLATION

HOW TO SAMPLE?

check (p != NULL);

p = p->next;

check (i < max);

total += sizes[i];

if (rand(100)== 0){ check (p != NULL); }

p = p->next;

if (rand(100) == 0){ check (i < max); }

total += sizes[i];

… but rand(100) is super expensive!

One idea: randomize …

Another idea: global counter

if (k++ % 100 == 0){ check (p != NULL); }

p = p->next;

if (k++ % 100 == 0){ check (i < max); }

total += sizes[i];

You’ll never get the second check!

CBI’s working solution

- Use a randomized global countdown

- Restore the countdown by sampling from a

geometric distribution

26

COOPERATIVE BUG ISOLATION
BUG ISOLATION

CBI’S SAMPLING METHOD

- Doesn’t use clock interrupt

- Isn’t periodic

- Deciding to check is relatively quick

Benefits

- Use a randomized global countdown

- Restore the countdown by sampling from a

geometric distribution

27

COOPERATIVE BUG ISOLATION
BUG ISOLATION

REAL CBI IS SLIGHTLY MORE COMPLEX

Smart(er) about what points to instrument

- Essentially finds acyclic regions of the control flow and instruments intelligently

- Clones regions of code with a “fast” variant and a “slow” variant

A number of optimizations exist to make countdown lookup faster

- e.g. Caching a global variable in local function such that it might be better optimized without

interprocedural analysis

28

WRAP-UP
BUG ISOLATION

IMPORTANCE OF SIMPLIFICATION IN FIXING/SECURING PROGRAMS

Methods include collaborative bug isolation / delta debugging

	Slide 1: Exercise #34
	Slide 2: Exercise #34: Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Administrivia and Announcements
	Slide 5: Administrivia and Announcements
	Slide 6: Bug Isolation
	Slide 7: Where We’re At
	Slide 8: Previously: Secure Design
	Slide 9: This lecture
	Slide 10: From Defect to Failure
	Slide 11: How to fix a bug
	Slide 12: Simplification
	Slide 13: Bug Reports
	Slide 14: Acting on bug reports
	Slide 15: Mozilla Anecdote: Example
	Slide 16: Cause and Effect
	Slide 17: Cause and Effect
	Slide 18: Delta Debugging
	Slide 19: Delta Debugging: Needs
	Slide 20: Delta Debugging: Algorithm
	Slide 21: Delta Debugging: Applications
	Slide 22: Cooperative Bug Isolation
	Slide 23: Cooperative Bug Isolation
	Slide 24: Cooperative Bug Isolation
	Slide 25: Cooperative Bug Isolation
	Slide 26: Cooperative Bug Isolation
	Slide 27: Cooperative Bug Isolation
	Slide 28: Wrap-Up

