EXERCISE 29: SOLUTION

SYMBOLIC EXECUTION REVIEW

How many states are in the symbolic execution tree for the following program?

main (argc) {
if (argc > 2){
if (argc < 1){
return 1;
} else if (argc > 3){
return 2;
}
}

return argc;

EXERCISE 29: SOLUTION

SYMBOLIC EXECUTION REVIEW

bR
How many states are in the symbolic execution tree for the following program? Q

Ry
77U]

if (argc > 2){

if < 1) T A D ,__(6\
e <) 1228 7§ =
} else if (argc > 3){

return 2; ("5\1\>§_>T—>7"56’>7

}
}
return argc;

}

ADMINISTRIVIA
AND
ANNOUNCEMENTS

\@%"f

CONCOLIC EXECUTION

EECS 677: Software Security Evaluation

Drew Davidson

WHERE WE’RE AT

(BEYOND?) DYNAMIC ANALYSIS

- generating test cases

PREVIOUSLY: SYMBOLIC EXECUTION

OUTLINE / OVERVIEW

ADVANCE ABSTRACT STATES ACROSS THE
PROGRAM

Split abstract states according to predicates to
enhance coverage

Use an SMT Solver to determine if the path constraint
is feasible

SOUND AND COMPLETE MODULO TERMINATION

Stealth limitation of testing as dynamic analysis as
well

Symbolic Execution =/= Burning in Effigy

THE SYMBOLIC STATE TREE

OUTLINE / OVERVIEW

"stdio.h"
main () {
x = getchar ()
y = 0;
if (x > 3){
y = /3
if (x == 4){
X++;
}
} else {
y = 25

}

return y;

Line:.2 |34 5
X=«
y=0
Line: -6 |7 Line: 18
X=a X=Q
y=0 |7 y =80
a >3 a <3
Line:-8913 Line:-9 13
X:Kﬁ X=a
y=17 y=7
a>3Na=4 a>3Na+#4
AB=a +1

1 12 13

THIS TIME: ENHANCING SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

TURNING THE SYMBOLIC EXECUTION
CONCEPT INTO A USABLE TOOL

LIMITATIONS / IMPROVEMENTS OF THE
ANALYSIS TECHNIQUE

@

LECTURE OUTLINE /‘\

* Generating test cases (‘ Q

* Analysis Termination

* Concolic Execution ‘ <‘
I

N
\y,

10

GENERATING TEST CASES

CONCOLIC EXECUTION

WAIT A MINUTE... WE’RE SUPPOSED TO BE
BUILDING A TEST SUITE!

"stdio.h"

(
X = getchar();

WHERE WE’RE AT

Vol

~e w O
S~ W
——

(BEYOND?) DYNAMIC ANALYSIS

- generating test cases
? ¢ X++;

return y;

GENERATING TEST CASES

CONCOLIC EXECUTION

Line: 2 |34 5
WAIT A MINUTE... WE’'RE SUPPOSED TO BE X =
BUILDING A TEST SUITE! y=0
... iInstead, we generated a symbolic execution tree /\
ine: Line:
"stdio.h" Line:6" |7 me_ o
main () { X=a X:g
x = getchar () ; y=0 |7 y=
y = 0; a >3 a<3
1if (x > 3){
y = /i
1f (x == 4){
X++; -]
} Line:-8-913 Line:-g" 13
} else { X=.af X=a
Yy = 2,’ y=7 y:?
} a>3Na=4 a>3A a4
return y;
) /\ﬁ:a +1

T 12 13

11

FROM TREES TO TESTS

CONCOLIC EXECUTION

Line:.2” |34 5
WAIT A MINUTE... WE'RE SUPPOSED TO BE X =
BUILDING A TEST SUITE! y=0

... iInstead, we generated a symbolic execution tree

consider a program trace

1[\“5\ X - ggr\‘c\/mr ())

fQ"\b\J 1

/%)

Line:-6 |7 Line: 10
X = X=a
y:,e’ 7 y=a9’
a >3 a <3
Line:-8.9°13 Line:-9" 13
X:Kﬁ X=a
y=7 y:?
a>3Na=4 a>3Na+*4
/\ﬁ:a +1

T 12 13

FROM TREES TO TESTS

CONCOLIC EXECUTION

Line: 2 |34 5
WAIT A MINUTE... WE’'RE SUPPOSED TO BE X =
BUILDING A TEST SUITE! y=0
... iInstead, we generated a symbolic execution tree
consider a program trace Line:-& |7
X=a
The trace shows us exactly which inputs were symbolic y=0 |7
a >3
The path constraint gives us bounds on the input
v
Line: 8913
X =af

S ABa 1

‘-.___-—‘-/

REPRESENTATIVE TOOL: KLEE

CONCOLIC EXECUTION

A STATE-OF-THE-ART SYMBOLIC EXECUTION ENGINE

http:/klee.doc.ic.ac.uk/

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler *
Stanford University

Abstract

We present a new symbolic execution tool. KLEE. ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We used KLEE to
thoroughly check all 89 stand-alone programs in the
GNU CoOREUTILS utility suite, which form the core
user-level environment installed on millions of Unix sys-
tems. and arguably are the single most heavily tested set
of open-source programs in existence. KLEE-generated
tests achieve high line coverage — on average over 90%
per tool (median: over 94%) and significantly beat
the coverage of the developers” own hand-written test
suite. When we did the same for 75 equivalent tools in
the BUSYBOX embedded system suite. results were even
better, including 100% coverage on 31 of them.

‘We also used KLEE as a bug finding tool, applying it to
452 applications (over 430K total lines of code). where
it found 56 serious bugs. including three in COREUTILS
that had been missed for over 15 vears. Finally, we used
KLEE to crosscheck purportedly identical BUSYBOX and
COREUTILS utilities, finding functional correctness er-
rors and a myriad of inconsistencies.

1 Introduction

Many classes of errors. such as functional correctness
bugs. are difficult to find without executing a piece of
code. The importance of such testing — combined with
the difficulty and poor performance of random and man-
ual approaches — has led to much recent work in us-
ing symbeolic execution to automatically generate test in-
puts [11,14-16,20-22,24,26.27,36]. At a high-level,
these tools use variations on the following idea: Instead
of running code on manually- or randomly-constructed
input, they run it on symbolic input initially allowed to
be “anything ™ They substitute program inputs with sym-

* Author names are in alphabetical order. Daniel Dunbar is the main
author of the KLEE system_

bolic values and replace corresponding concrete program
operations with ones that manipulate symbolic values.
‘When program execution branches based on a symbolic
value, the system (conceptually) follows both branches.
on each path maintaining a set of constraints called the
path condifion which must hold on execution of that
path. When a path terminates or hits a bug, a test case
can be generated by solving the current path condition
for concrete values. Assuming deterministic code, feed-
ing this concrete input to a raw, unmodified version of
the checked code will make it follow the same path and
hit the same bug_

Results are promising. However, while researchers
have shown such tools can sometimes get good cover-
age and find bugs on a small number of programs, it
has been an open question whether the approach has any
hope of consistently achieving high coverage on real ap-
plications. Two common concerns are (1) the exponen-
tial number of paths through code and (2) the challenges
in handling code that interacts with its surrounding envi-
ronment, such as the operating system, the network, or
the user (colloquially: “the environment problem™). Nei-
ther concern has been much helped by the fact that most
past work, including ours, has usually reported results on
a limited set of hand-picked benchmarks and typically
has not included any coverage numbers.

This paper makes two contributions. First, we present
a new symbolic execution tool, KLEE, which we de-
signed for robust, deep checking of a broad range of ap-
plications. leveraging several years of lessons from our
previous tool, EXE [16]. KLEE employs a variety of con-
straint solving optimizations, represents program states
compactly, and uses search heuristics to get high code
coverage. Additionally. it uses a simple and straight-
forward approach to dealing with the external environ-
ment. These features improve KLEE's performance by
over an order of magnitude and let it check a broad range
of system-intensive programs “out of the box”

14

http://klee.doc.ic.ac.uk/

@

LECTURE OUTLINE /‘\

* Generating test cases (‘ Q

* Analysis Termination

* Concolic Execution ‘ <‘
I

N
\y,

TERMINATION

OUTLINE / OVERVIEW

ONE ADVANTAGE OF SYMBOLIC EXECUTION:

Partial credit

WE CAN GUARANTEE TERMINATION AT THE
EXPENSE OF COMPLETENESS

Quit after a threshold is met (Tree size? Clock time?)

"stdio.h"
: int main () {
while (true) {
int b = getchar();
if (b == 5){
return 5;

}

O O 1 o O dbx W DN -

b=oa,

Line:.2” |34 5

Line: 6 Line: 7 |.3 4 5
b=a, b=0 |Q;
a,=5 a,#+ 5

Line: 6
b=oa,
a;# 5
b, =a,
a,=5

Line: 7~
b =03
a,#+ 5
b, = a;
a, 5

3 4 5

16

STATE PRUNING

SYMBOLIC EXECUTION

TERMINATION INSIGHT: A REDUNDANT STATE HAS
REDUNDANT SUCCESSORS
* With proper environmental handling

O 0 J O U v W N -

whil
in
if

}

: #include "stdio.h"
: int mai

n () {

e(true) {

t b = getchar();
(b == 5){

return 5;

4)
Line:.2 |34 5 .
b=oa, dd&'
"
A) ?~
\
Line: 6 Line: 7 |.3 4 5
b=a, b=0 |Q;
a,=5 a,#+ 5
_ J
Line: 6 Line: 7 |.3 4 5
b=a; b=0o; |a,
a,#5 a,#+ 5
b, =a, b, = a,
Q=95 a, *5

17

RESEARCH DIRECTION: “FIE ON FIRMWARE” ‘DE]‘OUR\

SYMBOLIC EXECUTION FOR “EXOTIC” ENVIRONMENTS

int a = *(0x400080)

int b = *(0x400080)

STATE PRUNING: LIMITATION

OUTLINE / OVERVIEW

SERIOUS PROGRAMS LIKELY HAVE STATE SPACE EXPLOSION

States are too complicated to prune.

"stdio.h"
main () {
i = 0;
while (b = getchar()) {
i++;
if (b == 5){

return 1i;

}
}

19

STATE PRIORITIZATION

OUTLINE / OVERVIEW

WHICH IS THE “BEST” STATE TO ADVANCE?

Akin to the fuzzing heuristics

"stdio.h"
: int main () {
int 1 = 0;
while (int b = getchar()) {
i++;
if (b == 5){
return 1i;
}

}
foo();

= O W 0 J o) U v W DN

=

20

@

LECTURE OUTLINE /‘\

* Generating test cases (‘ Q

* Analysis Termination

* Concolic Execution ‘ <‘
I

N
\y,

ANALYSIS SCOPE / LIMITS

OUTLINE / OVERVIEW

OVERBURDENING THE SOLVER

At some point, the path constraint becomes unwieldly

"stdio.h"
: int main(int argv, const char * argv) {
int 1 = 0;
if (shalsum(argv([1l]) == 0xf572d396fae9206628714fb2ce00£72e94£2258f) {

return i / 0;

}

o O b W N B

22

CONCOLIC EXECUTION

OUTLINE / OVERVIEW

Concrete + symbolic

BENEFITS
BiIG IDEA
Replace a symbolic value with a Increased coverage (at the cost of completeness)
representative concrete value Can still pair with termination thresholds

"stdio.h"
: int main (int argc, const char * argv) {
int 1 = 0;
if (shalsum(argv[l]) == 0xf572d396fae9206628714fb2ce00f£72e94£2258f) {

return i / 0;

}

1 o O s W DN -

23

CONCOLIC EXECUTION BEYOND THE SOLVER

OUTLINE / OVERVIEW

EXE: Automatically Generating Inputs of Death

AUTOMATICALLY DETERMINE CRASH VALUES

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, Dawson R. Engler
Computer Systems Laboratory
Stanford University
Stanford, CA 94305, U.S.A
{cristic, vganesh, piotrek, dill, engler} @cs.stanford.edu

ABSTRACT

This paper presents EXE, an effective bug-finding tool that
automatically generates inputs that crash real code. Instead
of running code on manually or randomly constructed input,
EXE runs it on symbolic input initially allowed to be “any-
thing.” As checked code runs, EXE tracks the constraints
on each symbolic (i.e., input-derived) memory location. If a
statement uses a symbolic value, EXE does not run it, but
instead adds it as an input-constraint; all other statements
run as usual. If code conditionally checks a symbolic ex-
pression, EXE forks execution, constraining the expression
to be true on the true branch and false on the other. Be-
cause EXE reasons about all possible values on a path, it
has much more power than a traditional runtime tool: (1)
it can force execution down any feasible program path and
(2) at dangerous operations (e.g., a pointer dereference), it
detects if the current path constraints allow any value that
causes a bug. When a path terminates or hits a bug, EXE
automatically generates a test case by solving the current
path constraints to find conerete values using its own co-
designed constraint solver, STP. Because EXE’s constraints
have no approximations, feeding this concrete input to an
uninstrumented version of the checked code will cause it to
follow the same path and hit the same bug (assuming deter-
ministic code),

EXE works well on real code, finding bugs along with
inputs that trigger them in: the BSD and Linux packet filter
implementations, the udhcpd DHCP server, the pcre regular
expression library, and three Linux file systems.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools, Symbolic execulion

General Terms

Keywords
Bug finding, test case generation, constraint solving, sym-
bolic execution, dynamic analysis, attack generation.

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fec.

CCS'06, October 30—November 3, 2006, Alexandria. Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ._.$5.00.

1. INTRODUCTION

Attacker-exposed code is often a tangled mess of deeply-
nested conditionals, labyrinthine eall chains, huge amounts
of code, and frequent, abusive use of casting and pointer
operations. For safety, this code must exhaustively vet in-
put received directly from potential attackers (such as sys-
tem call parameters, network packets, even data from USB
sticks). However, attempting to guard against all possible
attacks adds significant code complexity and requires aware-
ness of subtle issues such as arithmetic and buffer overflow
conditions, which the historical record unequivocally shows
programmers reason about poorly.

Currently, programmers check for such errors using a com-
bination of code review, manual and random testing, d.
namic tools, and static analysis. While helpful, these tech-
niques have significant weaknesses. The eode features de-
scribed above make manual inspection even more challeng-
ing than usual. The number of possibilities makes man-
ual testing far from exhaustive, and even less so when com-
pounded by programmer’s limited ability to reason about all
these possibilities. While random “fuzz” testing [35] often
finds interesting corner ease crrors, even a single equality
conditional can derail it: satisfying a 32-bit equality in a
branch condition requires correctly guessing one value out
of four billion possibilities. Correctly getting a sequence of
stich conditions is hopeless. Dynamic tools require test cases
to drive them, and thus have the same coverage problems
as both random and manual testing. Finally, while static
is benefits from full path coverage, the fact that it
inspects rather than cxecutes code means that it reasons
poorly about bugs that depend on aceurate value informa-
tion (the exact value of an index or size of an object), point-
ers, and heap layout, among many others.
paper describes EXE (“EXecution generated Exe-
cutions”™), an unusual but effective bug-finding tool built to
deeply check real code. The main insight behind EXE is that
code can automatically generate its own (potentially highly
complex) test cases. Instead of running code on manually
or randomly constructed input, EXE runs it on symbolic in-
put that is initially allowed to be “anything.” As checked
code runs, if it trics to operate on symbolic (ic., input-
derived) expressions, EXI replaces the operation with its
corresponding input-constraint; it runs all other operations
as usual. When code conditionally checks a symbolic ex-
pression, EXE forks execution, constraining the expression
to be true on the true branch and false on the other. When a
path terminates or hits a bug, EXE automatically generates
2 test case that will run this path by solving the path’s con-

ANALYSIS SCOPE / LIMITS

OUTLINE / OVERVIEW

OVERBURDENING THE SOLVER

At some point, the path constraint becomes unwieldly

THERE MAY BE CODE OUTSIDE THE ANALYSIS ENGINE

What happens on a network call?

"stdio.h"
: int main(int argc, const char * argv) {
int 1 = networkRead(argv[1l]);
if (i ==7){

return i / 0;

}

o O b W N B

25

CONCOLIC EXECUTION: BEYOND THE SOLVER

OUTLINE / OVERVIEW

AT SOME POINT, MAYBE WE JUST GUESS

Pick a random value

"stdio.h"
main (argc, * argv) {
i = networkRead(argv[1l]);
if(i = 7){

return i / 0;

}

S2E: WHOLE-SYSTEM SYMBOLIC EXECUTION!

OUTLINE / OVERVIEW

BIG IDEA: USE THE REAL SYSTEM

Back out assumptions

S2E: A Platform for

o Multi-Path Analysis of Software Systems

Vitaly Chipounov, Volodymyr Kuznetsov, George Candea

) School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

{vitaly.chipecunowv, vova.kuznetscv, george.candea}@epfl.ch

Abstract

This paper presents S2E, a platform for analyzing the properties and
‘behavior of software systems. We demonstrate S2E’s use in devel-
oping practical tools for comprehensive performance profiling, re-
verse engineering of proprietary software, and bug finding for both
kernel-mode and user-mode binaries. Building these tools on top of
S”E took less than 770 LOC and 40 person-hours each.

S2E’s novelty consists of its ability to scale to larpe real sys-
tems, such as a full Windows stack. S2E is based on two new ideas:
selective symbolic execution, a way to automatically minimize the
amount of code that has to be executed symbolically given a target
analysis, and relaxed execution consistency models, a way to make
principled performance/accuracy trade-offs in complex analyses.
These techniques give S°E three key abilities: to simultaneously
analyze entire famulies of execution paths, instead of just one exe-
cution at a time; to perform the analyses in-vivo within a real soft-
ware stack—user programs, libraries, kernel, drivers, etc.—instead
of using abstract models of these layers; and to operate directly on
‘binaries, thus being able to analyze even proprietary software.

Coneeptually, SE is an automated path explorer with modular
path analyzers: the explorer drives the target system down all ex-
ecution paths of interest, while analyzers check properties of each
such path (e.g , to look for bugs) or simply collect information (e.g..
count page faults). Desired paths can be specified in multiple ways,
and S°E users can either combine existing analyzers to build a cus-
tom analysis tool, or write new analyzers using the S?E APL

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]

General Terms Reliability, Verification, Performance, Security

1. Introduction

System developers routinely need to analyze the behavior of what
they build. One basic analysis is to understand observed behavior,
such as why a given web server is slow on a SPECweb benchmark.
More sophisticated analyses aim to characterize future behavior in
previously unseen circumstances, such as what will a web server’s
maximum latency and minimum throughput be, once deployed at

Permission to make digital or hard copies of all or part of this werk for personal or
classroom use is granted without fee provided that copies are not made of distributed
for profit o commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers of to redistribute
to lists, requires prior specific permission and/or a fee

ASPLOS’11, March 5-11, 2011, Newport Beach, Califomia, USA.

Copyright © 2011 ACM 978-1-4503-0266-1/11/03...$10.00

a customer site. Ideally, system designers would also like to be
able to do quick what-if analyses, such as determining whether
aligning a certain data structure on a page boundary will aveid all
cache misses and thus increase performance. For small programs,
experienced developers can often reason through some of these
questions based on code alone. The goal of our work is to make it
feasible to answer such questions for large, complex, real systems.

‘We infroduce in this paper a platform that enables easy con-
struction of analysis tools (such as oprofile, valgrind, bug finders,
or reverse engineering tools) that simultaneously offer the follow-
ing three properties: (1) they efficiently analyze entire families of
execution paths; (2) they maximize realism by running the analy-
ses within a real software stack; and (3) they are able to directly
analyze binaries. We explain these properties below.

First, predictive analyses often must reason about entire fami-
lies of paths through the target system, not just one path. For exam-
ple, security analyses must check that there exist no corner cases
that could violate a desired security policy; recent work has em-
ployed model checking [29] and symbolic execution [11] to find
bugs in real systems—these are all multi-path analyses. One of
our case studies demonstrates multi-path analysis of performance
properties: instead of profiling solely one execution path, we derive
performance envelopes that characterize the performance of entire
families of paths. Such analyses can check real-time requirements
(e.g., that an interrupt handler will never exceed a given bound on
execution time). or can help with capacity planning (e.g., deter-
mine how many web servers to provision for a web farm). In the
end, properties shown to hold for all paths constitute proofs, which
are in essence the ultimate prediction of a system’s behavior.

Second, an accurate estimate of program behavior often requires
taking into account the whole environment surrounding the ana-
Iyzed program: libraries, kernel, drivers, etc.—in other words, it
requires in-vivo' analysis. Even small programs interact with their
environment (e.g., to read/write files or send/recetve network pack-
ets), so understanding program behavior requires understanding the
nature of these interactions. Some tools execute the real environ-
ment, but allow calls from different execution paths to interfere
inconsistently with each other [12, 18]. Most approaches abstract
away the environment behind a model [2, 11], but writing abstract
models is labor-intensive (taking in some cases multiple person-
years [2]), models are rarely 100% accurate, and they tend to lose

1 vivo is Latin for “within the living™ and refers to experimenting using
a whole live system; i virro uses a synthetic or partial system. In life sci-
ences, in vivo testing—animal testing or clinical trials—is often preferred,
because, when organisms or tissues are disrupted (as in the case of in vitro
settings), tesults can be less . Analogously, in-
vivo program analysis captures all interactions of the znalyzed code with its
surrounding system, not just with a simplified abstraction of that system.

27

WRAP-UP

SYMBOLIC EXECUTION

Exercise each feasible program path

28

NEXT TIME...

SAT SOLVERS

Peeking inside the magic box that determines if an
equation is feasible

29

	Slide 1: Exercise 29: Solution
	Slide 2: Exercise 29: Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Concolic Execution
	Slide 5: Where We’re At
	Slide 6: Previously: Symbolic Execution
	Slide 7: The Symbolic State Tree
	Slide 8: This Time: Enhancing Symbolic Execution
	Slide 9: Lecture Outline
	Slide 10: Generating Test Cases
	Slide 11: Generating Test Cases
	Slide 12: From trees to Tests
	Slide 13: From trees to Tests
	Slide 14: Representative Tool: KLEE
	Slide 15: Lecture Outline
	Slide 16: Termination
	Slide 17: State Pruning
	Slide 18: Research Direction: “Fie on Firmware”
	Slide 19: State Pruning: Limitation
	Slide 20: State Prioritization
	Slide 21: Lecture Outline
	Slide 22: Analysis Scope / Limits
	Slide 23: Concolic Execution
	Slide 24: Concolic Execution beyond the solver
	Slide 25: Analysis Scope / Limits
	Slide 26: Concolic Execution: Beyond the Solver
	Slide 27: S2E: Whole-System Symbolic Execution!
	Slide 28: Wrap-up
	Slide 29: Next Time…

