
EXERCISE 30

1

SYMBOLIC EXECUTION REVIEW

How many states are in the symbolic execution tree for the following program?

1: int main(int argc){

 2: if (argc > 2){

 3: if (argc < 1){

 4: return 1;

 5: } else if (argc > 3){

 6: return 2;

 7: }

 8: }

 9: return argc;

 10: }

 11:

EXERCISE 30 SOLUTION

2

SYMBOLIC EXECUTION REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

CONCOLIC EXECUTION
EECS 677: Software Security Evaluation

Drew Davidson

WHERE WE’RE AT

(BEYOND?) DYNAMIC ANALYSIS

5

- generating test cases

6

PREVIOUSLY: SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

ADVANCE ABSTRACT STATES ACROSS THE
PROGRAM

Split abstract states according to predicates to

enhance coverage

Symbolic Execution =/= Burning in Effigy

Use an SMT Solver to determine if the path constraint

is feasible

SOUND AND COMPLETE MODULO TERMINATION

Stealth limitation of testing as dynamic analysis as

well

7

THE SYMBOLIC STATE TREE
OUTLINE / OVERVIEW

1: #include "stdio.h"

 2: int main(){

 3: int x = getchar();

 4: int y = 0;

 5: if (x > 3){

 6: y = 7;

 7: if (x == 4){

 8: x++;

 9: }

 10: } else {

 11: y = 2;

 12: }

 13: return y;

 14: }

Line: 6

x = 𝛼
y = 0

𝛼 > 3

Line: 10

x = 𝛼

Line: 2 3 4 5

x = 𝛼

11 12

𝛼 ≤ 3

13

Line: 8

x = 𝛼
y = 7

Line: 9

x = 𝛼
y = 7

13

𝛼 = 4 𝛼 > 3

y = 0

y = 0 27

7

9 13

𝛽 = 𝛼 + 1

𝛽

∧

∧

𝛼 > 3 𝛼 ≠ 4 ∧

8

THIS TIME: ENHANCING SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

TURNING THE SYMBOLIC EXECUTION
CONCEPT INTO A USABLE TOOL

LIMITATIONS / IMPROVEMENTS OF THE
ANALYSIS TECHNIQUE

LECTURE OUTLINE

• Generating test cases

• Analysis Termination

• Concolic Execution

10

GENERATING TEST CASES
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED TO BE
BUILDING A TEST SUITE!

1: #include "stdio.h"

 2: int main(){

 `3: int x = getchar();

 4: int y = 0;

 5: if (x > 3){

 6: y = 7;

 7: if (x == 4){

 8: x++;

 9: }

 10: } else {

 11: y = 2;

 12: }

 13: return y;

 14: }

11

GENERATING TEST CASES
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED TO BE
BUILDING A TEST SUITE!

1: #include "stdio.h"

 2: int main(){

 `3: int x = getchar();

 4: int y = 0;

 5: if (x > 3){

 6: y = 7;

 7: if (x == 4){

 8: x++;

 9: }

 10: } else {

 11: y = 2;

 12: }

 13: return y;

 14: }

… instead, we generated a symbolic execution tree

Line: 6

x = 𝛼
y = 0

𝛼 > 3

Line: 10

x = 𝛼

Line: 2 3 4 5

x = 𝛼

11 12

𝛼 ≤ 3

13

Line: 8

x = 𝛼
y = 7

Line: 9

x = 𝛼
y = 7

13

𝛼 = 4 𝛼 > 3

y = 0

y = 0 27

7

9 13

𝛽 = 𝛼 + 1

𝛽

∧

∧

𝛼 > 3 𝛼 ≠ 4 ∧

12

FROM TREES TO TESTS
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED TO BE
BUILDING A TEST SUITE!

… instead, we generated a symbolic execution tree

Line: 6

x = 𝛼
y = 0

𝛼 > 3

Line: 10

x = 𝛼

Line: 2 3 4 5

x = 𝛼

11 12

𝛼 ≤ 3

13

Line: 8

x = 𝛼
y = 7

Line: 9

x = 𝛼
y = 7

13

𝛼 = 4 𝛼 > 3

y = 0

y = 0 27

7

9 13

𝛽 = 𝛼 + 1

𝛽

∧

∧

𝛼 > 3 𝛼 ≠ 4 ∧

consider a program trace

13

FROM TREES TO TESTS
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED TO BE
BUILDING A TEST SUITE!

… instead, we generated a symbolic execution tree

Line: 6

x = 𝛼
y = 0

𝛼 > 3

Line: 2 3 4 5

x = 𝛼

Line: 8

x = 𝛼
y = 7

𝛼 = 4 𝛼 > 3

y = 0

7

7

9 13

𝛽 = 𝛼 + 1

𝛽

∧

∧

consider a program trace

The trace shows us exactly which inputs were symbolic

The path constraint gives us bounds on the input

14

REPRESENTATIVE TOOL: KLEE
CONCOLIC EXECUTION

A STATE-OF-THE-ART SYMBOLIC EXECUTION ENGINE

http://klee.doc.ic.ac.uk/

http://klee.doc.ic.ac.uk/

LECTURE OUTLINE

• Generating test cases

• Analysis Termination

• Concolic Execution

16

TERMINATION
OUTLINE / OVERVIEW

ONE ADVANTAGE OF SYMBOLIC EXECUTION:
Partial credit

WE CAN GUARANTEE TERMINATION AT THE
EXPENSE OF COMPLETENESS

Quit after a threshold is met (Tree size? Clock time?)

1: #include "stdio.h"

 2: int main(){

 3: while(true){

 4: int b = getchar();

 5: if (b == 5){

 6: return 5;

 7: }

 8: }

 9: }

Line: 6

b = 𝛼1

𝛼1 = 5

Line: 7

b = 𝛼1

𝛼1 ≠ 5

Line: 2 3 4 5

b = 𝛼1

3 4
𝛼2

5

Line: 6

b = 𝛼1

𝛼1 ≠ 5

Line: 7

b = 𝛼2

𝛼1 ≠ 5

3 4

b2 = 𝛼2

5

𝛼2 = 5

b2 = 𝛼2

𝛼2 ≠ 5

𝛼3

17

STATE PRUNING
SYMBOLIC EXECUTION

TERMINATION INSIGHT: A REDUNDANT STATE HAS
REDUNDANT SUCCESSORS
* With proper environmental handling

1: #include "stdio.h"

 2: int main(){

 3: while(true){

 4: int b = getchar();

 5: if (b == 5){

 6: return 5;

 7: }

 8: }

 9: }

Line: 6

b = 𝛼1

𝛼1 = 5

Line: 7

b = 𝛼1

𝛼1 ≠ 5

Line: 2 3 4 5

b = 𝛼1

3 4
𝛼2

5

Line: 6

b = 𝛼1

𝛼1 ≠ 5

Line: 7

b = 𝛼2

𝛼1 ≠ 5

3 4

b2 = 𝛼2

5

𝛼2 = 5

b2 = 𝛼2

𝛼2 ≠ 5

𝛼3

18

RESEARCH DIRECTION: “FIE ON FIRMWARE”
FUZZING

SYMBOLIC EXECUTION FOR “EXOTIC” ENVIRONMENTS

int a = *(0x400080)

int b = *(0x400080)

19

STATE PRUNING: LIMITATION
OUTLINE / OVERVIEW

SERIOUS PROGRAMS LIKELY HAVE STATE SPACE EXPLOSION

States are too complicated to prune.

1: #include "stdio.h"

 2: int main(){

 3: int i = 0;

 4: while(int b = getchar()){

 5: i++;

 6: if (b == 5){

 7: return i;

 8: }

 9: }

 10: }

20

STATE PRIORITIZATION
OUTLINE / OVERVIEW

WHICH IS THE “BEST” STATE TO ADVANCE?

Akin to the fuzzing heuristics

1: #include "stdio.h"

 2: int main(){

 3: int i = 0;

 4: while(int b = getchar()){

 5: i++;

 6: if (b == 5){

 7: return i;

 8: }

 9: }

 10: foo();

 11: }

LECTURE OUTLINE

• Generating test cases

• Analysis Termination

• Concolic Execution

22

ANALYSIS SCOPE / LIMITS
OUTLINE / OVERVIEW

OVERBURDENING THE SOLVER

At some point, the path constraint becomes unwieldly

1: #include "stdio.h"

 2: int main(int argv, const char * argv){

 3: int i = 0;

 4: if(sha1sum(argv[1]) == 0xf572d396fae9206628714fb2ce00f72e94f2258f){

 5: return i / 0;

 6: }

 7: }

23

CONCOLIC EXECUTION
OUTLINE / OVERVIEW

Concrete + symbolic

BIG IDEA

Replace a symbolic value with a

representative concrete value

1: #include "stdio.h"

 2: int main(int argc, const char * argv){

 3: int i = 0;

 4: if(sha1sum(argv[1]) == 0xf572d396fae9206628714fb2ce00f72e94f2258f){

 5: return i / 0;

 6: }

 7: }

BENEFITS

Increased coverage (at the cost of completeness)

Can still pair with termination thresholds

24

CONCOLIC EXECUTION BEYOND THE SOLVER
OUTLINE / OVERVIEW

AUTOMATICALLY DETERMINE CRASH VALUES

25

ANALYSIS SCOPE / LIMITS
OUTLINE / OVERVIEW

OVERBURDENING THE SOLVER

At some point, the path constraint becomes unwieldly

1: #include "stdio.h"

 2: int main(int argc, const char * argv){

 3: int i = networkRead(argv[1]);

 4: if(i = 7){

 5: return i / 0;

 6: }

 7: }

THERE MAY BE CODE OUTSIDE THE ANALYSIS ENGINE

What happens on a network call?

26

CONCOLIC EXECUTION: BEYOND THE SOLVER
OUTLINE / OVERVIEW

1: #include "stdio.h"

 2: int main(int argc, const char * argv){

 3: int i = networkRead(argv[1]);

 4: if(i = 7){

 5: return i / 0;

 6: }

 7: }

AT SOME POINT, MAYBE WE JUST GUESS

Pick a random value

27

S2E: WHOLE-SYSTEM SYMBOLIC EXECUTION!
OUTLINE / OVERVIEW

BIG IDEA: USE THE REAL SYSTEM

Back out assumptions

WRAP-UP

SYMBOLIC EXECUTION

28

Exercise each feasible program path

NEXT TIME…

SAT SOLVERS

29

Peeking inside the magic box that determines if an

equation is feasible

	Slide 1: Exercise 30
	Slide 2: Exercise 30 Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Concolic Execution
	Slide 5: Where We’re At
	Slide 6: Previously: Symbolic Execution
	Slide 7: The Symbolic State Tree
	Slide 8: This Time: Enhancing Symbolic Execution
	Slide 9: Lecture Outline
	Slide 10: Generating Test Cases
	Slide 11: Generating Test Cases
	Slide 12: From trees to Tests
	Slide 13: From trees to Tests
	Slide 14: Representative Tool: KLEE
	Slide 15: Lecture Outline
	Slide 16: Termination
	Slide 17: State Pruning
	Slide 18: Research Direction: “Fie on Firmware”
	Slide 19: State Pruning: Limitation
	Slide 20: State Prioritization
	Slide 21: Lecture Outline
	Slide 22: Analysis Scope / Limits
	Slide 23: Concolic Execution
	Slide 24: Concolic Execution beyond the solver
	Slide 25: Analysis Scope / Limits
	Slide 26: Concolic Execution: Beyond the Solver
	Slide 27: S2E: Whole-System Symbolic Execution!
	Slide 28: Wrap-up
	Slide 29: Next Time…

