
EXERCISE 30
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SYMBOLIC EXECUTION REVIEW

How many states are in the symbolic execution tree for the following program?

1: int main(int argc){

  2: if (argc > 2){

  3: if (argc < 1){

  4: return 1;

  5: } else if (argc > 3){

  6: return 2;

  7: }

  8: }

  9: return argc;

 10: }

 11: 
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WHERE WE’RE AT

(BEYOND?) DYNAMIC ANALYSIS
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- generating test cases
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PREVIOUSLY: SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

ADVANCE ABSTRACT STATES ACROSS THE 
PROGRAM

Split abstract states according to predicates to 

enhance coverage

Symbolic Execution =/= Burning in Effigy

Use an SMT Solver to determine if the path constraint 

is feasible

SOUND AND COMPLETE MODULO TERMINATION

Stealth limitation of testing as dynamic analysis as 

well
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THE SYMBOLIC STATE TREE
OUTLINE / OVERVIEW

1: #include "stdio.h"

  2: int main(){

  3: int x = getchar();

  4: int y = 0;

  5: if (x > 3){

  6: y = 7;

  7: if (x == 4){

  8: x++;

  9: }

 10: } else {

 11: y = 2;

 12: }

 13: return y;

 14: }

Line: 6

x = 𝛼
y = 0

𝛼 > 3

Line: 10

x = 𝛼

Line: 2 3 4 5

x = 𝛼

11 12

𝛼 ≤ 3

13

Line: 8

x = 𝛼
y = 7

Line: 9

x = 𝛼
y = 7

13

𝛼 = 4 𝛼 > 3

y = 0

y = 0 27 

7 

9 13

𝛽 = 𝛼 + 1 

𝛽

∧

∧

𝛼 > 3 𝛼 ≠ 4 ∧
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THIS TIME: ENHANCING SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

TURNING THE SYMBOLIC EXECUTION 
CONCEPT INTO A USABLE TOOL

LIMITATIONS / IMPROVEMENTS OF THE 
ANALYSIS TECHNIQUE



LECTURE OUTLINE

• Generating test cases

• Analysis Termination

• Concolic Execution
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GENERATING TEST CASES
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED TO BE 
BUILDING A TEST SUITE!

1: #include "stdio.h"

  2: int main(){

  `3: int x = getchar();

  4: int y = 0;

  5: if (x > 3){

  6: y = 7;

  7: if (x == 4){

  8: x++;

  9: }

 10: } else {

 11: y = 2;

 12: }

 13: return y;

 14: }
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GENERATING TEST CASES
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED TO BE 
BUILDING A TEST SUITE!

1: #include "stdio.h"

  2: int main(){

  `3: int x = getchar();

  4: int y = 0;

  5: if (x > 3){

  6: y = 7;

  7: if (x == 4){

  8: x++;

  9: }

 10: } else {

 11: y = 2;

 12: }

 13: return y;

 14: }

… instead, we generated a symbolic execution tree

Line: 6

x = 𝛼
y = 0

𝛼 > 3

Line: 10

x = 𝛼

Line: 2 3 4 5

x = 𝛼

11 12

𝛼 ≤ 3

13

Line: 8

x = 𝛼
y = 7

Line: 9

x = 𝛼
y = 7

13

𝛼 = 4 𝛼 > 3

y = 0

y = 0 27 

7 

9 13

𝛽 = 𝛼 + 1 

𝛽

∧

∧

𝛼 > 3 𝛼 ≠ 4 ∧
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FROM TREES TO TESTS
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED TO BE 
BUILDING A TEST SUITE!

… instead, we generated a symbolic execution tree

Line: 6

x = 𝛼
y = 0

𝛼 > 3

Line: 10

x = 𝛼

Line: 2 3 4 5

x = 𝛼

11 12

𝛼 ≤ 3

13

Line: 8

x = 𝛼
y = 7

Line: 9

x = 𝛼
y = 7

13

𝛼 = 4 𝛼 > 3

y = 0

y = 0 27 

7 

9 13

𝛽 = 𝛼 + 1 

𝛽

∧

∧

𝛼 > 3 𝛼 ≠ 4 ∧

consider a program trace
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FROM TREES TO TESTS
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED TO BE 
BUILDING A TEST SUITE!

… instead, we generated a symbolic execution tree

Line: 6

x = 𝛼
y = 0

𝛼 > 3

Line: 2 3 4 5

x = 𝛼

Line: 8

x = 𝛼
y = 7

𝛼 = 4 𝛼 > 3

y = 0

7 

7 

9 13

𝛽 = 𝛼 + 1 

𝛽

∧

∧

consider a program trace

The trace shows us exactly which inputs were symbolic

The path constraint gives us bounds on the input
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REPRESENTATIVE TOOL: KLEE
CONCOLIC EXECUTION

A STATE-OF-THE-ART SYMBOLIC EXECUTION ENGINE

http://klee.doc.ic.ac.uk/ 

http://klee.doc.ic.ac.uk/


LECTURE OUTLINE

• Generating test cases

• Analysis Termination

• Concolic Execution
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TERMINATION
OUTLINE / OVERVIEW

ONE ADVANTAGE OF SYMBOLIC EXECUTION:
Partial credit

WE CAN GUARANTEE TERMINATION AT THE 
EXPENSE OF COMPLETENESS

Quit after a threshold is met (Tree size? Clock time?)

1: #include "stdio.h"

  2: int main(){

  3: while(true){

  4: int b = getchar();

  5: if (b == 5){

  6: return 5;

  7: }

  8: }

  9: }

Line: 6

b = 𝛼1

𝛼1 = 5

Line: 7

b = 𝛼1

𝛼1 ≠ 5

Line: 2 3 4 5

b = 𝛼1

3 4
𝛼2

5

Line: 6

b = 𝛼1

𝛼1 ≠ 5

Line: 7

b = 𝛼2

𝛼1 ≠ 5

3 4

b2 = 𝛼2 

5

𝛼2 = 5 

b2 = 𝛼2 

𝛼2 ≠ 5 

𝛼3



17

STATE PRUNING
SYMBOLIC EXECUTION

TERMINATION INSIGHT: A REDUNDANT STATE HAS 
REDUNDANT SUCCESSORS 
* With proper environmental handling

1: #include "stdio.h"

  2: int main(){

  3: while(true){

  4: int b = getchar();

  5: if (b == 5){

  6: return 5;

  7: }

  8: }

  9: }

Line: 6

b = 𝛼1

𝛼1 = 5

Line: 7

b = 𝛼1

𝛼1 ≠ 5

Line: 2 3 4 5

b = 𝛼1

3 4
𝛼2

5

Line: 6

b = 𝛼1

𝛼1 ≠ 5

Line: 7

b = 𝛼2

𝛼1 ≠ 5

3 4

b2 = 𝛼2 

5

𝛼2 = 5 

b2 = 𝛼2 

𝛼2 ≠ 5 

𝛼3
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RESEARCH DIRECTION: “FIE ON FIRMWARE”
FUZZING

SYMBOLIC EXECUTION FOR “EXOTIC” ENVIRONMENTS 

int a = *(0x400080)

int b = *(0x400080)



19

STATE PRUNING: LIMITATION
OUTLINE / OVERVIEW

SERIOUS PROGRAMS LIKELY HAVE STATE SPACE EXPLOSION

States are too complicated to prune.

1: #include "stdio.h"

  2: int main(){

  3: int i = 0;

  4: while(int b = getchar()){

  5: i++;

  6: if (b == 5){

  7: return i;

  8: }

  9: }

 10: }
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STATE PRIORITIZATION
OUTLINE / OVERVIEW

WHICH IS THE “BEST” STATE TO ADVANCE?

Akin to the fuzzing heuristics

1: #include "stdio.h"

  2: int main(){

  3: int i = 0;

  4: while(int b = getchar()){

  5: i++;

  6: if (b == 5){

  7: return i;

  8: }

  9: }

 10: foo();

 11: }



LECTURE OUTLINE

• Generating test cases

• Analysis Termination

• Concolic Execution
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ANALYSIS SCOPE / LIMITS
OUTLINE / OVERVIEW

OVERBURDENING THE SOLVER

At some point, the path constraint becomes unwieldly

1: #include "stdio.h"

  2: int main(int argv, const char * argv){

  3: int i = 0;

  4: if(sha1sum(argv[1]) == 0xf572d396fae9206628714fb2ce00f72e94f2258f){

  5: return i / 0;

  6: }

  7: }
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CONCOLIC EXECUTION
OUTLINE / OVERVIEW

Concrete + symbolic

BIG IDEA

Replace a symbolic value with a 

representative concrete value 

1: #include "stdio.h"

  2: int main(int argc, const char * argv){

  3: int i = 0;

  4: if(sha1sum(argv[1]) == 0xf572d396fae9206628714fb2ce00f72e94f2258f){

  5: return i / 0;

  6: }

  7: }

BENEFITS

Increased coverage (at the cost of completeness)

Can still pair with termination thresholds
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CONCOLIC EXECUTION BEYOND THE SOLVER
OUTLINE / OVERVIEW

AUTOMATICALLY DETERMINE CRASH VALUES
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ANALYSIS SCOPE / LIMITS
OUTLINE / OVERVIEW

OVERBURDENING THE SOLVER

At some point, the path constraint becomes unwieldly

1: #include "stdio.h"

  2: int main(int argc, const char * argv){

  3: int i = networkRead(argv[1]);

  4: if(i = 7){

  5: return i / 0;

  6: }

  7: }

THERE MAY BE CODE OUTSIDE THE ANALYSIS ENGINE

What happens on a network call?
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CONCOLIC EXECUTION: BEYOND THE SOLVER
OUTLINE / OVERVIEW

1: #include "stdio.h"

  2: int main(int argc, const char * argv){

  3: int i = networkRead(argv[1]);

  4: if(i = 7){

  5: return i / 0;

  6: }

  7: }

AT SOME POINT, MAYBE WE JUST GUESS

Pick a random value
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S2E: WHOLE-SYSTEM SYMBOLIC EXECUTION!
OUTLINE / OVERVIEW

BIG IDEA: USE THE REAL SYSTEM

Back out assumptions



WRAP-UP

SYMBOLIC EXECUTION
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Exercise each feasible program path 



NEXT TIME…

SAT SOLVERS
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Peeking inside the magic box that determines if an 

equation is feasible
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