EXERCISE #23

REFERENCE MONITORS REVIEW

Write your name and answer the following on a piece of paper

Give an example of a safety property that a reference monitor might enforce. How
would an inline reference monitor work to enforce that safety property?

EXERCISE #23 SOLUTION
REFERENCE MONITORS REVIEW

Second reading assigned

- The original paper on CFI

Basically halfway through the semester

- Time to check in on how things are

ADMINISTRIVIA going
AND

ANNOUNCEMENTS

CONTROL-FLOW
INTEGRITY

EECS 677: Software Security Evaluation

Drew Davidson

(<

2R

TOPIC CONTEXT

CONTEMPLATED A FORM OF ATTACK,
l LEFT WITH A HINT OF DEFENSES

LAST TIME: REFERENCE MONITORS

REVIEW: LAST LECTURE

ENSURE ADHERENCE TO A SAFETY PoOLICY

Halt the program is an action would violate the policy

Keep the program “on the rails”

LECTURE OUTLINE ' /

* Motivation /‘Q‘X
* Implementation ‘ /‘
considerations < \)

* Practical manifestations

WE KNOW THE PROBLEM

MOTIVATION

JUMPING WHERE YOU SHOULDN’T

— This certainly includes ROP
— Might also involve other attacks

#include <stdio.h>
#include <string.h>

struct auth {
char pass[4];
void (*func)(struct auth*);

void success() { printf("Success!\n"); }
void failure() { printf("Failure\n"); }

void check(struct auth *a) {
if (strcmp(a->pass, "pass") == 0)
a->func = &success;
else
a->func = &failure;
}
int main(int argc, char **argv) {
struct auth a;

printf("Enter your password:\n"
scanf("%s", &a.pass);

a.func(&a);

WE KNOW THE PROBLEM

JUMPING WHERE YOU SHOULDN’T

— This certainly includes ROP
— Might also involve other attacks

LOOK, NO RET OVERWRITE!

MOTIVATION

#include <stdio.h>
#include <string.h>

struct auth {
char pass[4];
void (*func)(struct auth*);

void success() { printf("Success!\n"); }
void failure() { printf("Failure\n"); }

void check(struct auth *a) {
if (strcmp(a->pass, "pass") == 0)
a->func = &success;
else
a->func = &failure;
}
int main(int argc, char **argv) {
struct auth a;

printf("Enter your password:\n"
scanf("%s", &a.pass);

a.func(&a);

WE KNOW THE PROBLEM

MOTIVATION

JUMPING WHERE YOU SHOULDN’T

— This certainly includes ROP
— Might also involve other attacks

LOOK, NO RET OVERWRITE!

10

LECTURE OUTLINE ' /

* Motivation /‘Q‘X
* Implementation ‘ /‘
considerations < \)

* Practical manifestations

% HOW TO IMPLEMENT?

NAIVE APPROACH:

Encode the entire ICFG into the program text (] WA ? C&U\ I/\)

|
| 7[(vaL\vkL\f(,‘() {

? sons | Hue 9

!

1

J

LECTURE OUTLINE ' /

* Motivation /‘Q‘X
* Implementation ‘ /‘
considerations < \)

* Practical manifestations

INTEL CET

PRACTICAL MANIFESTATIONS

CONTROL-FLOW ENHANCEMENT TECHNOLOGY

Requires recompilation of software to support

Requires hardware support (!)

SCOPE

1) Prevent ret overwriting with a shadow stack

14

INTEL CET

PRACTICAL MANIFESTATIONS (t’

CONTROL-FLOW ENHANCEMENT TECHNOLOGY '\

Requires recompilation of software to support

Requires hardware support (!)

SCOPE /

1) (SHSTK) — Shadow Stack: Prevent ret overwriting
with a shadow stack

2) (IBT) = Indirect Branch Tracking: Prevent indirect
jumps into gadgets

s%@‘k

v

SD%

Lo

\

b
e

6 L\‘l/]dv 9)‘0“/?
74

L,ﬂ\l/

5]

15

INTEL CET - USAGE

PRACTICAL MANIFESTATIONS

HW SUPPORT

On Linux, possible to check if the program has CET:

th
Intel 11*" Gen or Later / AMD Ryzen 5000+ readelf —n <binary>

Description

OS SUPPORT Should include the note

) Displaying notes found in: .note.gnu.property
Windows W10 19H1 (v1903) owner Data size
Linux: kernel 6.6 GNU 0x00000020

NT_GNU_PROPERTY_TYPE_O

Properties: x86 feature: IBT, SHSTK
COMPILER FLAGS x86 ISA needed: x86-64-baseline

gcc/llvm: -fcf-protection=full

Visual Studio: /CETCOMPAT

16

INTEL CET

PRACTICAL MANIFESTATIONS

CET HARDWARE CHANGES
Altered semantics of the CALL and JMP

Moves a processor state machine into the WAIT_FOR_ENDBRANCH state
In WAIT_FOR_ENDBRANCH, next instruction must be the ENDBRANCH instruction

Added a new instruction at control-transfer targets

The new ENDBRANCH instruction

17

PRACTICAL MANIFESTATIONS

MICROSOFT CONTROL FLOW GUARD

ConsoleApplication Property Pages

Configuration: | Active(Debug)

4 Configuration Properties

General

Debugging

WC++ Directories

a4 CfC++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Heade
Output Files
Browse Information
Advanced
All Options
Command Line
4 Linker

General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL

A __ 1

£ >

]

Windows Metadata v

*

~ | Platform: | Active(Win32) ~ Configuration Manager...
Enable String Pooling
Enable Minimal Rebuild Yes (/Gm)
Enable C++ Exceptions Yes (fEHsc)
Srnaller Type Check Mo
Basic Runtime Checks Both (/RTC1, equiv. to /RTCsu) (/RTC1)
Runtime Library Multi-threaded Debug DLL (/MDd)
Struct Member Alignment Default
Security Check Enable Security Check (/G5)
Ves Uguardic
Enable Function-Level Linking
Enable Parallel Code Generation
Enable Enhanced Instruction Set Mot Set
Floating Point Model Precise (/fp:precise)
Enable Floating Point Exceptions
Create Hotpatchable Image
Control Flow Guard
Guard security check helps detect attempts to dispatch to illegal block of code, (/guard:cf)
Cancel Apply

18

7// HISTORICAL DETOUR

HISTORICAL DETOUR

PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

RECALL FROM LAST TIME...

ROP attacks considered harmful

HOW INDUSTRY RESPONDED

MS CFG as a case study in a lot of interesting
aspects of software security

(DETOUR)

20

HISTORICAL DETOUR

PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

2012 Strategy Slide Deck

Stronger mitigations for preventing code execution

Making strategic investments in technologies that strongly mitigate code execution is one way we could get to "done”

Indirect call Control Flow Guard Split stack

2 i i) ;
H Indirect jump Enforce control flow integrity Use a separate stack for return

] on indirect calls addresses
Indirect return

? | Contextswitch

Load executable Image load restrictions Dynamic code restrictions

Modify
writable code Images must be signed and arbitrary Prevent dynamic code generation,
images cannot be loaded modification, and execution

Most indirect jumpiuse read-only pointers (e.g. import thunks, switch jump tables)
and conjikt switches only happen in a limited number of places

Code Integrity Guard (CIG) +
NoChildProc + NoLowLabel + NoRemotelmage

Intel CET
(hardware
shadow stack)

Not Anymore ©

Arbitrary Code Guard (ACG)

Source: https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/
2018_02_OffensiveCon/The%20Evolution%200f%20CF1%20Attacks%20and%20Defenses.pdf

21

2012 Strategy Slide Deck

Stronger mitigations for preventing code execution

Making strategic investments in technologies that strongly mitigate code execution is one way we could get to "done”

Indirect call Control Flow Guard Split stack

v Indirect jump Enforce control flow integrity Use a separate stack for return

] on indirect calls addresses
Indirect return

7 Contextswitch

Load executable Image load restrictions Dynamic code restrictions

Modify
writable code Images must be signed and arbitrary Preventdynamic code generation,

images cannot be loaded modification, and execution

Most indirect jumpiuse read-only pointers (e.g. import thunks, switch jump tables
«t switches only happen in a limited number of places

Code Integrity Guard (CIG) +
NoChildProc + NoLowlLabel + NoRemotelmage

Intel CET
(hardware
shadow stack)

Not Anymore ©

Arbitrary Code Guard (ACG)

HISTORICAL DETOUR

PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

THIS IS AN INTERESTING TALK!

I’d recommend you watch it: https:/www.youtube.com/watch?v=00gpl-2rMTw

|IT COMES WITH THE HISTORICAL BURDEN OF CONTROL FLOW GUARD

Widely-publicized issue that allowed it to be avoided

[DETOUR]

23

https://www.youtube.com/watch?v=oOqpl-2rMTw
https://www.youtube.com/watch?v=oOqpl-2rMTw
https://www.youtube.com/watch?v=oOqpl-2rMTw

Microsoft's overarching goal is to make exploitation financially infeasible or impossible

All RCE memory Constraining control
corruption exploits flow to “legitimate”
found in-the-wild paths breaks all of
hijack control flow these exploits as- Security teams are
written » well positioned to

Attackers often follow »
“path of least After some formal
resistance”, breaking thought, we believe
them means CFI will robustly
iIncreasing cost of mitigate against
exploitation stronger primitives

drive these changes

CFG had no formal threat model during very early development. Thought of as a way to kill ROP.

Hindsight is 20/20, but we did have formal thought around future exploit trends. See [1]

HISTORICAL DETOUR

PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

CONTROL FLOW GUARD HAS A HISTORICAL BURDEN

Widely-publicized issue that allowed it to be avoided

We’ll get to the actual workaround, but let’s talk about its impact

(DETOUR)

25

7// HISTORICAL DETOUR

CONTROL FLOW GUARD

PRACTICAL MANIFESTATIONS

DETAILS
Precision: call needs to be a valid function entry point

Enforcement: OS verifies indirect control transfer
destinations via a table in protected memory

PROTECTIONS
Protected destinations page in read-only memory

Read-only memory bit can be turned off by attacker

®

27

CLANG’S CFI

PRACTICAL MANIFESTATIONS

DETAILS
Precision: call needs to match type signature

Enforcement: compiler-inserted checks

- T(fc”\” ~ ¥
)

28

	Slide 1: Exercise #23
	Slide 2: Exercise #23 Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Control-Flow Integrity
	Slide 5: Topic Context
	Slide 6: Last Time: Reference Monitors
	Slide 7: Lecture Outline
	Slide 8: We know the Problem
	Slide 9: We know the Problem
	Slide 10: We know the Problem
	Slide 11: Lecture Outline
	Slide 12: How to Implement?
	Slide 13: Lecture Outline
	Slide 14: Intel CET
	Slide 15: Intel CET
	Slide 16: Intel CET - Usage
	Slide 17: Intel CET
	Slide 18: Microsoft Control Flow Guard
	Slide 19: Historical Detour
	Slide 20: Historical Detour
	Slide 21: Historical Detour
	Slide 22
	Slide 23: Historical Detour
	Slide 24
	Slide 25: Historical Detour
	Slide 26: Historical Detour
	Slide 27: Control Flow Guard
	Slide 28: Clang’s CFI
	Slide 29: Wrap-up

