
EXERCISE #9

1

STATIC ANALYSIS REVIEW

• Use path notation to indicate one

path (or set of paths) through this

CFG:

ADMINISTRIVIA
AND
ANNOUNCEMENTS

DATAFLOW ANALYSIS
EECS 677: Software Security Evaluation

Drew Davidson

CONTINUE TO EXPLORE STATIC ANALYSIS

4

CLASS PROGRESS

LOOK INTO CONCRETE FORMS OF STATIC
ANALYSIS

- Particularly interested in dataflow analysis

for now

- Building up the underlying abstractions /

techniques to perform such analysis

LAST TIME: STATIC ANALYSIS
5

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Syntactic Analysis

- Dataflow Analysis

- Model Checking

int main(int argc, char * argv[]){

 return (strcmp(argv[1], “secretpw”);

}

$: sudo apt install binutils

$: gcc auth.c –o auth

$; strings auth | less

auth.c

cmdline

LAST TIME: STATIC ANALYSIS
6

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Syntactic Analysis

- Dataflow Analysis

- Model Checking

int main(int argc, char * argv[]){

 return (strcmp(argv[1], “secretpw”);

}

$: sudo apt install binutils

$: gcc auth.c –o auth

$; strings auth | less

/lib64/ld-linux-x86-64.so.2

__libc_start_main

__cxa_finalize

libc.so.6

GLIBC_2.2.5

GLIBC_2.34

_ITM_deregisterTMCloneTable

__gmon_start__

_ITM_registerTMCloneTable

PTE1

u+UH

secretpw

9*3$"

GCC: (Ubuntu 13.2.0-23ubuntu4) 13.2.0

Scrt1.o

…

auth.c

output

cmdline

LAST TIME: STATIC ANALYSIS
7

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Syntactic Analysis

- Dataflow Analysis

- Model Checking

Stmt1: %x = add i32 %y, 0

%y has the value 1

%x has the value 1

%y has the value 1

state M

state M’

Dataflow Idea: treat each statement as a program state transformer

- Transform a program state into a new (updated) program state

- Simple idea: assume a precondition, induce a postcondition

LAST TIME: STATIC ANALYSIS
8

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Syntactic Analysis

- Dataflow Analysis

- Model Checking

TRUE POWER OF STATIC ANALYSIS

- Unnecessary to supply a given program input

- Summarize the behavior of the program under

ANY input

- Capturing all possible behaviors of a program

THE ART OF ABSTRACTION
9

CLASS PROGRESS

ENUMERATING ALL PROGRAM
CONFIGURATIONS IS TOO EXPENSIVE

The trick is getting an approximation of the

program’s behavior that is both…

A complete approximation of program behavior

=

an over-approximation of program behavior

• Complete

• Close enough to avoid too many false positives

DATAFLOW ANALYSIS
10

CLASS PROGRESS

VIEW INSTRUCTIONS AS TRANSFORMERS OF PROGRAM STATE

Flow-insensitive analysis Path-sensitive analysisFlow-sensitive analysis

Too squishy Too hardJust right

Several dimensions to tune the state space, we started describing one:

CLASS PROGRESS

WE KNOW SOME BAD BEHAVIORS THAT
MIGHT BEAR DETECTION

WE KNOW SOME PROMISING
TECHNIQUES FOR ANALYSIS

11

LECTURE OUTLINE

• Intuition: Flow-sensitive

analysis

• Local Flow-sensitive

analysis

• Global Flow-sensitive

analysis

PRELIMINARIES: DOT
13

DATAFLOW ANALYSIS – PRELIMINARIES: DOT

FLOW-SENSITIVE ANALYSIS RELIES HEAVILY ON THE CONTROL-FLOW GRAPH
CONCEPT

It’s pretty helpful to have a CFG in hand

Good news! You know how to automatically induce the CFG structure

Gooder news! There’s a format to visualize CFGs

digraph name {

 nodeA […];

 nodeB […];

 nodeA -> nodeB […];

}

dot –Tpdf graph.dot –o graph.pdf

File graph.dot cmdline output

PRELIMINARIES: DOT
14

DATAFLOW ANALYSIS – PRELIMINARIES: DOT

FLOW-SENSITIVE ANALYSIS RELIES HEAVILY ON THE CONTROL-FLOW GRAPH
CONCEPT

It’s pretty helpful to have a CFG in hand

Good news! You know how to automatically induce the CFG structure

Gooder news! There’s a format to visualize CFGs

Goodest news! llvm can output a dot-format CFG for .ll-format code

opt -passes=dot-cfg prog.ll > /dev/null

opt -dot-cfg prog.ll > /dev/null

FLOW-SENSITIVE ANALYSIS
15

DATAFLOW ANALYSIS

CONSIDER THE ORDER OF INSTRUCTIONS ALONG ANY
FEASIBLE CONTROL FLOW

Glom together results of multiple paths

FOR NOW, LET’S START SIMPLE: ANALYSIS WITHIN A BASIC
BLOCK

Known as local analysis

LECTURE OUTLINE

• Intuition: Flow-sensitive

analysis

• Local Flow-sensitive

analysis

• Global Flow-sensitive

analysis

COMPOSING TRANSFER FUNCTIONS
17

DATAFLOW ANALYSIS

STATEMENTS COMPOSE NATURALLY WITH EACH OTHER
(WITHIN A BASIC BLOCK)

Stmt1: x = y ;

y has the value 1

x has the value 1

y has the value 1

z has the value 1

state M

state M’

Stmt2: z = x ;
For now, we’ll only think about

analysis within a BBL

AN EARLY WIN
18

DATAFLOW ANALYSIS

EVEN WITH THIS VERY SIMPLE CONCEPT, MIGHT BE ABLE
TO DETECT SOME ISSUES

Stmt1: x = y ;

y has the value 1

state M

Stmt2: z = 0 ;

Stmt3: p = 1 / z ;

𝒚: 𝟏 , 𝒙: 𝟏

𝑪𝑹𝑨𝑺𝑯? !

𝒚: 𝟏 , 𝒙: 𝟏 , 𝒛: 𝟎

FORMALIZING TRANSFER FUNCTIONS
19

DATAFLOW ANALYSIS

IF WE WANT TO BUILD AN AUTOMATED
(LOCAL) DATAFLOW ANALYSIS, WE NEED
PROGRAMMATIC PRECISION

Stmt1: k += 1 ;

Memory state M

Memory state M’

- Some sort of specification of what a statement does

- A statement is a memory state transformer

Need a semantics!

Representation mapping (large)

set of memory states to each other

Depend somewhat on the analysis

- Keep states manageable

- Handle the uncertainty inherent in

static analysis

Goals:

MEMORY AS VALUE SETS
20

DATAFLOW ANALYSIS

LET EACH MEMORY LOCATION CORRESPOND TO
A SET OF VALUES IT MIGHT CONTAIN

Stmt1: k += 1 ;

Memory state M

Memory state M’

- Define (informally) transfer functions as mapping

elements of M to elements of M’

𝑘: {1}

𝑘: {2}

𝑘: {3,4}

𝑘: {4,5}

COMPOSING VALUE SETS
21

DATAFLOW ANALYSIS

Stmt1: x = y ;

Stmt2: z = x ;

Stmt3: p = 1 / z ;

𝒚: 𝟎, 𝟏

𝒚: 𝟎, 𝟏 , 𝒙: {𝟎, 𝟏}

𝒚: 𝟎, 𝟏 , 𝒙: 𝟎, 𝟏 , 𝒛: {𝟎, 𝟏}

𝑪𝑹𝑨𝑺𝑯? !

Stmt0: y = randomBit()

(example: assume a 1-bit data size)

MODELLING UNCERTAINTY
22

DATAFLOW ANALYSIS

WE CAN NOW HANDLE OPAQUE DATA SOMEWHAT CLEANLY

Stmt1: x = y ;

Stmt2: z = USER_INPUT ;

Stmt3: p = 1 / z ;

Stmt1: x = y ;

Stmt2: z = global ;

Stmt3: p = 1 / z ;

LECTURE OUTLINE

• (Local) Dataflow analysis

• Global dataflow analysis

COMPOSING BLOCKS
24

GLOBAL DATAFLOW ANALYSIS

VALUE-SET MODEL OF MEMORY IMPLIES A METHOD TO EXTEND
BEYOND LOCAL ANALYSIS

void f(bool a){

 bool b = a;

 bool c = a;

 if (a){

 b = true;

 c = true

 } else {

 b = true;

 c = false;

 }

 return b;

}

COMPOSING BLOCKS
25

GLOBAL DATAFLOW ANALYSIS

VALUE-SET MODEL OF MEMORY IMPLIES A METHOD TO EXTEND
BEYOND LOCAL ANALYSIS

void f(bool a){

 bool b = a;

 bool c = a;

 if (a){

 b = true;

 c = true

 } else {

 b = true;

 c = false;

 }

 return b;

}

MAY-BE VS MUST-BE ANALYSIS
26

GLOBAL DATAFLOW ANALYSIS

HOW WE JOIN VALUES IS BASED ON THE GOAL OF OUR ANALYSIS

void f(bool a){

 bool b = a;

 bool c = a;

 if (a){

 b = true;

 c = true

 } else {

 b = true;

 c = false;

 }

 return b;

}

CHAOTIC ITERATION
27

GLOBAL DATAFLOW ANALYSIS

IN WHAT ORDER DO WE PROCESS BLOCKS?

01. int x = 2;

02. if (g){

03. x = x - 1;

04. if (g2){

05. x = x – 1;

06. }

07. }

08. return 1 / x;

01. int x = 2;

02. if (g){

03. x = x – 1;

04. if (g2){

05. x = x -1;

06. }

07. }

08. return 1 / x;

TROUBLE ON THE HORIZON
28

GLOBAL DATAFLOW ANALYSIS

Loops

LOOPS ARE TOUGH TO HANDLE!
29

GLOBAL DATAFLOW ANALYSIS

ISSUES WITH LOOPS

- Generate lots of paths

- Cyclic data dependency

Oh, brother! You may have some loops

LECTURE END!

• Local Dataflow analysis

• Global Dataflow analysis

	Slide 1: ExerCise #9
	Slide 2: Administrivia and Announcements
	Slide 3: Dataflow Analysis
	Slide 4: Continue to Explore Static Analysis
	Slide 5: Last Time: Static Analysis
	Slide 6: Last Time: Static Analysis
	Slide 7: Last Time: Static Analysis
	Slide 8: Last Time: Static Analysis
	Slide 9: The Art of Abstraction
	Slide 10: dataflow analysis
	Slide 11: Class Progress
	Slide 12: Lecture Outline
	Slide 13: Preliminaries: DOT
	Slide 14: Preliminaries: DOT
	Slide 15: Flow-Sensitive Analysis
	Slide 16: Lecture Outline
	Slide 17: Composing Transfer Functions
	Slide 18: An Early Win
	Slide 19: Formalizing Transfer Functions
	Slide 20: Memory As Value SEts
	Slide 21: Composing Value SEts
	Slide 22: Modelling Uncertainty
	Slide 23: Lecture Outline
	Slide 24: Composing Blocks
	Slide 25: Composing Blocks
	Slide 26: MAY-BE vs MUST-BE ANalysis
	Slide 27: Chaotic Iteration
	Slide 28: Trouble on the Horizon
	Slide 29: Loops Are Tough to Handle!
	Slide 30: Lecture END!

