EXERCISE #8

STATIC ANALYSIS REVIEW 1:

%2 = alloca i32, align 4

%3 = load i32, ptr %2, align 4
%4 = icmp slt i32 %3, 2

br il %4, label %5, label %17

T F

_{

» Use path notation to indicate one AR
path (or set of paths) through this /
CFG: -

%7 = load i32, ptr @c, align 4
%8 = icmp slt i32 %7, 3
br il %8, label %9, label %12

| ——

9: 12:
%10 = load i32, ptr @c, align 4 | | %13 = load 132, ptr @b, align 4
%11 = add nsw igz %10, 1 ¢ %14 = icmp sgt i32 %13, 3
br label %6 T E
Y
15:

store i32 12, ptr @c, align 4
br label %16

16:
br label %17

\

17:
ret void
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LOOK INTO CONCRETE FORMS OF STATIC
ANALYSIS

CONTINUE TO EXPLORE STATIC ANALYSIS

CLASS PROGRESS

Particularly interested in dataflow analysis
for now

Building up the underlying abstractions /
techniques to perform such analysis

o

We will watch your lcareer
with great interest.




LAST TIME: STATIC ANALYSIS

REVIEW: STATIC ANALYSIS

TRUE POWER OF STATIC ANALYSIS

- Unnecessary to supply a given program input
- Summarize the behavior of the program under

ANY input
- Capture all possible behaviors of a program

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Textual Analysis
- CFG Analysis




LAST TIME: STATIC ANALYSIS

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

| - Textual Analysis )
- CFG Analysis

auth.c

int main(int argc, char * argv[] ) {
return (strcmp(argv([l], “secretpw”);

cmdline

$: sudo apt install binutils
$: gcc auth.c -o auth
$: strings auth | less




LAST TIME: STATIC ANALYSIS

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Textual Analysis
- CFG Analysis

auth.c

output

int main(int argc, char * argv[] ) {

return (strcmp(argv[l], “secretpw”);

}

cmdline

$: sudo apt install binutils
$: gcc auth.c —-o auth
$: strings auth | less

/1ib64/1d-1inux-x86-64.50.2
libc start main

__cxa finalize

libc.so.6

GLIBC 2.2.5

GLIBC 2.34

ITM deregisterTMCloneTable
__gmon_ start

_ITM registerTMCloneTable
PTE1

u+UH

secretpw

9*x35"

GCC: (Ubuntu 13.2.0-23ubuntu4)
Scrtl.o

13.2.0




LAST TIME: STATIC ANALYSIS

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS

TECHNIQUES

- Textual Analysis

- CFG Analysis Simplistic Idea: identify isolated issues, refine FPs by CFG reachability
- Build the CFG
- Test if the isolated issue is reachable in the CF
Problems

- A path might be infeasible even if there are edges in the CFG
- Issues might not be isolated

Elaborate Idea: check every path in the program one-by-one

- Build the CFG
- Explore each path through the program
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LAST TIME: STATIC ANALYSIS

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Textual Analysis
- CFG Analysis

Elaborate Idea: check every path in the program one-by-one
- Build the CFG

- Explore each path through the program

Problems

- Too expensive: many paths, maybe an unbounded set!

- Many program configurations even on a single path!




THIS TIME: ADDRESSING THESE PROBLEMS

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Textual Analysis
- CFG Analysis

Elaborate Idea: check every path in the program one-by-one
- Build the CFG

- Explore each path through the program

Problems

- Too expensive: many paths, maybe an unbounded set!

- Many program configurations even on a single path!




THIS TIME: ADDRESSING THESE PROBLEMS

REVIEW: STATIC ANALYSIS

Elaborate Idea: check every path in the program one-by-one
- Build the CFG

- Explore each path through the program

Problems

- Too expensive: many paths, maybe an unbounded set!

- Many program configurations even on a single path!
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THE ART OF ABSTRACTION

CLASS PROGRESS

ENUMERATING ALL PROGRAM
CONFIGURATIONS IS TOO EXPENSIVE

The trick is getting an approximation of the
program'’s behavior that is both...
* Complete

* Close enough to avoid too many false positives

A complete approximation of program behavior

an over-approximation of program behavior

14



MODELLING VALUES

ABSTRACTING DATA

1 define il (i1 ) {

add i1 0, 1
udiv i1 1,

ret il Model the values a location MIGHT hold

define void O { 1 define void O { define void (i1
= add il 0, 1 2 = call il () = udiv il 1,
ret void ret void ret void

3
} 4 } }

define void ) { 1 define void O { define void (i1
add il 0, 1 2 = call i1 () ret void
udiv il 1, 3 udiv il 1, }
ret void 4 ret void
5

}

}



MODELLING INSTRUCTIONS

ABSTRACTING DATA

1 define il (i1 ) {

add i1 0, 1
udiv i1 1,
ret il

define void O { 1 define void O { define void (i1
= add il 0, 1 2 = call il () ret void

ret void 3 ret void }

} g }

define void O { 1 define void O { define void (i1
add il 0, 1 2 = call il () = udiv il 1,

udiv il 1, 3 udiv il 1, ret void

4

5

ret void ret void }

}

}



1 define void
2 = mul 12
ret void

3
4 }

MODELLING INSTRUCTIONS

ABSTRACTING DATA
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DATAFLOW ANALYSIS

CLASS PROGRESS

VIEW INSTRUCTIONS AS TRANSFORMERS OF PROGRAM STATE

Several dimensions to tune the state space, we started describing one:

Flow-insensitive analysis Flow-sensitive analysis

Too squishy Just right

Path-sensitive analysis

Too hard

18



FLOW-SENSITIVE ANALYSIS

DATAFLOW ANALYSIS

CONSIDER THE ORDER OF INSTRUCTIONS ALONG ANY
FEASIBLE CONTROL FLOW
Glom together results of multiple paths

FOR NOW, LET’S START SIMPLE: ANALYSIS WITHIN A BASIC
BLOCK

Known as local analysis



5
/
X

LECTURE OUTLINE \“

* Intuition: Flow-sensitive ' /\"X
analysis /‘

* Local Flow-sensitive ‘ (‘)
analysis \Y

* Global Flow-sensitive »\“'

analysis



COMPOSING TRANSFER FUNCTIONS

DATAFLOW ANALYSIS

STATEMENTS COMPOSE NATURALLY WITH EACH OTHER
(WITHIN A BASIC BLOCK)

state M
y has the value 1

Stmt;: x =y ; Keep It

Stmt,: z=x;

For now, we’ll only think about
analysis within a BBL

state M’

X has the value 1
y has the value 1
Zz has the value 1




AN EARLY WIN

DATAFLOW ANALYSIS

EVEN WITH THIS VERY SIMPLE CONCEPT, MIGHT BE ABLE
TO DETECT SOME ISSUES

state M
y has the value 1

Stmt;: x =y,
(y:1),(x:1)

Stmt,: z=0,;
(y:1),(x:1),(z: 0)
Stmty:p=1/z;

CRASH?!
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FORMALIZING TRANSFER FUNCTIONS

DATAFLOW ANALYSIS

IF WE WANT TO BUILD AN AUTOMATED
(LocAL) DATAFLOW ANALYSIS, WE NEED

PROGRAMMATIC PRECISION Need a semantics!
Representation mapping (large)

- Some sort of specification of what a statement does

: set of memory states to each other
- A statement is a memory state transformer

Memory state M

Stmt;: k+=1,; Depend somewhat on the analysis

Goals:

Memory state M’

- Keep states manageable
- Handle the uncertainty inherent in
static analysis



MEMORY AS VALUE SETS

DATAFLOW ANALYSIS

LET EACH MEMORY LOCATION CORRESPOND TO
A SET OF VALUES IT MIGHT CONTAIN

- Define (informally) transfer functions as mapping
elements of M to elements of M’

Memory state M (k:{1}) (k:{3,4})

Stmt;: k+=1,;

Memory state M’ (k:{2}) (k:{4,5})
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COMPOSING VALUE SETS

DATAFLOW ANALYSIS
(example: assume a 1-bit data size)

Stmt,: y = randomBit()
(y:{0,1})

Stmt: X =y ;
(y:10,1},x:{0,1})
Stmt,: z = x ;
(y:{0,1}, x:{0,1},2z: {0, 1})

Stmty:p=1/z;

CRASH?!



MODELLING UNCERTAINTY

DATAFLOW ANALYSIS

WE CAN NOW HANDLE OPAQUE DATA SOMEWHAT CLEANLY

pANAS
\/5[”)”
Stmt;: x =y, Stmt;: x =y,
Z*’{d{ }(t("flsl)’{éﬂ,”
Stmt,: z = USER_INPUT ; Stmt,: z = global ;
z:u,xé Y ! U,/;} ){!Qf,/S
Stmty:p=1/2z; Stmty:p=1/2z;

catt?!

26
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COMPOSING BLOCKS

GLOBAL DATAFLOW ANALYSIS

VALUE-SET MODEL OF MEMORY IMPLIES A METHOD TO EXTEND
BEYOND LOCAL ANALYSIS

void f (bool a) {
bool b = a;
bool ¢ = a;

if (a) {
b = true;
c = true

} else {
b = true;
c = false;

}

return b;

28
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COMPOSING BLOCKS

GLOBAL DATAFLOW ANALYSIS

VALUE-SET MODEL OF MEMORY IMPLIES A METHOD TO EXTEND L S
BEYOND LOCAL ANALYSIS

void f (bool a) {
bool b = a;
ar

}




MAY-BE VS MUST-BE ANALYSIS

GLOBAL DATAFLOW ANALYSIS

How WE JOIN VALUES IS BASED ON THE GOAL OF OUR ANALYSIS

volid f (bool a) {
bool b = a;
bool ¢ = a;
if (a){
b = true;
c = tTrue
} else {
b = true;
c = false;
}

return b;

}



CHAOTIC ITERATION

GLOBAL DATAFLOW ANALYSIS

0l. int x = 2;
02. if ( g ) {
IN WHAT ORDER DO WE PROCESS BLOCKS?
0l. int x = 2;
02. if ( g ) {
03. X =x - 1;
04. if ( g2 ) {
05. X =x - 1;
06. }
07. 1}
08. return 1 / x;
07. }
08. return 1 / x;

31



TROUBLE ON THE HORIZON

GLOBAL DATAFLOW ANALYSIS

32
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LOOPS ARE TOUGH TO HANDLE!

GLOBAL DATAFLOW ANALYSIS

ISSUES WITH LOOPS

- Generate lots of paths
- Cyclic data dependency

Oh, brother! You may have some loops
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