EXERCISE #8

STATIC ANALYSIS REVIEW 1:

%2 = alloca i32, align 4

%3 = load i32, ptr %2, align 4
%4 = icmp slt i32 %3, 2

br il %4, label %5, label %17

T F

_{

» Use path notation to indicate one AR
path (or set of paths) through this /
CFG: -

%7 = load i32, ptr @c, align 4
%8 = icmp slt i32 %7, 3
br il %8, label %9, label %12

| ——

9: 12:
%10 = load i32, ptr @c, align 4 | | %13 = load 132, ptr @b, align 4
%11 = add nsw igz %10, 1 ¢ %14 = icmp sgt i32 %13, 3
br label %6 T E
Y
15:

store i32 12, ptr @c, align 4
br label %16

16:
br label %17

\

17:
ret void

ADMINISTRIVIA
AND
ANNOUNCEMENTS

\@%"f

DATAFLOW ANALYSIS

EECS 677: Software Security Evaluation

Drew Davidson

LOOK INTO CONCRETE FORMS OF STATIC
ANALYSIS

CONTINUE TO EXPLORE STATIC ANALYSIS

CLASS PROGRESS

Particularly interested in dataflow analysis
for now

Building up the underlying abstractions /
techniques to perform such analysis

o

We will watch your lcareer
with great interest.

LAST TIME: STATIC ANALYSIS

REVIEW: STATIC ANALYSIS

TRUE POWER OF STATIC ANALYSIS

- Unnecessary to supply a given program input
- Summarize the behavior of the program under

ANY input
- Capture all possible behaviors of a program

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Textual Analysis
- CFG Analysis

LAST TIME: STATIC ANALYSIS

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

| - Textual Analysis)
- CFG Analysis

auth.c

int main(int argc, char * argv[]) {
return (strcmp(argv([l], “secretpw”);

cmdline

$: sudo apt install binutils
$: gcc auth.c -o auth
$: strings auth | less

LAST TIME: STATIC ANALYSIS

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Textual Analysis
- CFG Analysis

auth.c

output

int main(int argc, char * argv[]) {

return (strcmp(argv[l], “secretpw”);

}

cmdline

$: sudo apt install binutils
$: gcc auth.c —-o auth
$: strings auth | less

/1ib64/1d-1inux-x86-64.50.2
libc start main

__cxa finalize

libc.so.6

GLIBC 2.2.5

GLIBC 2.34

ITM deregisterTMCloneTable
__gmon_ start

_ITM registerTMCloneTable
PTE1

u+UH

secretpw

9*x35"

GCC: (Ubuntu 13.2.0-23ubuntu4)
Scrtl.o

13.2.0

LAST TIME: STATIC ANALYSIS

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS

TECHNIQUES

- Textual Analysis

- CFG Analysis Simplistic Idea: identify isolated issues, refine FPs by CFG reachability
- Build the CFG
- Test if the isolated issue is reachable in the CF
Problems

- A path might be infeasible even if there are edges in the CFG
- Issues might not be isolated

Elaborate Idea: check every path in the program one-by-one

- Build the CFG
- Explore each path through the program

LAST TIME: STATIC ANALYSIS

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Textual Analysis
- CFG Analysis

Elaborate Idea: check every path in the program one-by-one
- Build the CFG
- Explore each path through the program

LAST TIME: STATIC ANALYSIS

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Textual Analysis
- CFG Analysis

Elaborate Idea: check every path in the program one-by-one
- Build the CFG

- Explore each path through the program

Problems

- Too expensive: many paths, maybe an unbounded set!

- Many program configurations even on a single path!

THIS TIME: ADDRESSING THESE PROBLEMS

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS
TECHNIQUES

- Textual Analysis
- CFG Analysis

Elaborate Idea: check every path in the program one-by-one
- Build the CFG

- Explore each path through the program

Problems

- Too expensive: many paths, maybe an unbounded set!

- Many program configurations even on a single path!

THIS TIME: ADDRESSING THESE PROBLEMS

REVIEW: STATIC ANALYSIS

Elaborate Idea: check every path in the program one-by-one
- Build the CFG

- Explore each path through the program

Problems

- Too expensive: many paths, maybe an unbounded set!

- Many program configurations even on a single path!

LECTURE OUTLINE ’ £
/XA
» Abstracting dato ' /\&X
* Abstracting contro K‘(l“
\§)
>\»«<"

THE ART OF ABSTRACTION

CLASS PROGRESS

ENUMERATING ALL PROGRAM
CONFIGURATIONS IS TOO EXPENSIVE

The trick is getting an approximation of the
program'’s behavior that is both...
* Complete

* Close enough to avoid too many false positives

A complete approximation of program behavior

an over-approximation of program behavior

14

MODELLING VALUES

ABSTRACTING DATA

1 define il (i1) {

add i1 0, 1
udiv i1 1,

ret il Model the values a location MIGHT hold

define void O { 1 define void O { define void (i1
= add il 0, 1 2 = call il () = udiv il 1,
ret void ret void ret void

3
} 4 } }

define void) { 1 define void O { define void (i1
add il 0, 1 2 = call i1 () ret void
udiv il 1, 3 udiv il 1, }
ret void 4 ret void
5

}

}

MODELLING INSTRUCTIONS

ABSTRACTING DATA

1 define il (i1) {

add i1 0, 1
udiv i1 1,
ret il

define void O { 1 define void O { define void (i1
= add il 0, 1 2 = call il () ret void

ret void 3 ret void }

} g }

define void O { 1 define void O { define void (i1
add il 0, 1 2 = call il () = udiv il 1,

udiv il 1, 3 udiv il 1, ret void

4

5

ret void ret void }

}

}

1 define void
2 = mul 12
ret void

3
4 }

MODELLING INSTRUCTIONS

ABSTRACTING DATA

17

DATAFLOW ANALYSIS

CLASS PROGRESS

VIEW INSTRUCTIONS AS TRANSFORMERS OF PROGRAM STATE

Several dimensions to tune the state space, we started describing one:

Flow-insensitive analysis Flow-sensitive analysis

Too squishy Just right

Path-sensitive analysis

Too hard

18

FLOW-SENSITIVE ANALYSIS

DATAFLOW ANALYSIS

CONSIDER THE ORDER OF INSTRUCTIONS ALONG ANY
FEASIBLE CONTROL FLOW
Glom together results of multiple paths

FOR NOW, LET’S START SIMPLE: ANALYSIS WITHIN A BASIC
BLOCK

Known as local analysis

5
/
X

LECTURE OUTLINE \“

* Intuition: Flow-sensitive ' /\"X
analysis /‘

* Local Flow-sensitive ‘ (‘)
analysis \Y

* Global Flow-sensitive »\“'

analysis

COMPOSING TRANSFER FUNCTIONS

DATAFLOW ANALYSIS

STATEMENTS COMPOSE NATURALLY WITH EACH OTHER
(WITHIN A BASIC BLOCK)

state M
y has the value 1

Stmt;: x =y ; Keep It

Stmt,: z=x;

For now, we’ll only think about
analysis within a BBL

state M’

X has the value 1
y has the value 1
Zz has the value 1

AN EARLY WIN

DATAFLOW ANALYSIS

EVEN WITH THIS VERY SIMPLE CONCEPT, MIGHT BE ABLE
TO DETECT SOME ISSUES

state M
y has the value 1

Stmt;: x =y,
(y:1),(x:1)

Stmt,: z=0,;
(y:1),(x:1),(z: 0)
Stmty:p=1/z;

CRASH?!

22

FORMALIZING TRANSFER FUNCTIONS

DATAFLOW ANALYSIS

IF WE WANT TO BUILD AN AUTOMATED
(LocAL) DATAFLOW ANALYSIS, WE NEED

PROGRAMMATIC PRECISION Need a semantics!
Representation mapping (large)

- Some sort of specification of what a statement does

: set of memory states to each other
- A statement is a memory state transformer

Memory state M

Stmt;: k+=1,; Depend somewhat on the analysis

Goals:

Memory state M’

- Keep states manageable
- Handle the uncertainty inherent in
static analysis

MEMORY AS VALUE SETS

DATAFLOW ANALYSIS

LET EACH MEMORY LOCATION CORRESPOND TO
A SET OF VALUES IT MIGHT CONTAIN

- Define (informally) transfer functions as mapping
elements of M to elements of M’

Memory state M (k:{1}) (k:{3,4})

Stmt;: k+=1,;

Memory state M’ (k:{2}) (k:{4,5})

25

COMPOSING VALUE SETS

DATAFLOW ANALYSIS
(example: assume a 1-bit data size)

Stmt,: y = randomBit()
(y:{0,1})

Stmt: X =y ;
(y:10,1},x:{0,1})
Stmt,: z = x ;
(y:{0,1}, x:{0,1},2z: {0, 1})

Stmty:p=1/z;

CRASH?!

MODELLING UNCERTAINTY

DATAFLOW ANALYSIS

WE CAN NOW HANDLE OPAQUE DATA SOMEWHAT CLEANLY

pANAS
\/5[”)”
Stmt;: x =y, Stmt;: x =y,
Z*’{d{ }(t("flsl)’{éﬂ,”
Stmt,: z = USER_INPUT ; Stmt,: z = global ;
z:u,xé Y ! U,/;}){!Qf,/S
Stmty:p=1/2z; Stmty:p=1/2z;

catt?!

26

</

;- Egi:jlz:u’z:lj o-\l/-vL: r:IIEysis "‘/‘“
taflow analysis \\“x
A ({’0‘
L
Y
» “'

COMPOSING BLOCKS

GLOBAL DATAFLOW ANALYSIS

VALUE-SET MODEL OF MEMORY IMPLIES A METHOD TO EXTEND
BEYOND LOCAL ANALYSIS

void f (bool a) {
bool b = a;
bool ¢ = a;

if (a) {
b = true;
c = true

} else {
b = true;
c = false;

}

return b;

28

29

COMPOSING BLOCKS

GLOBAL DATAFLOW ANALYSIS

VALUE-SET MODEL OF MEMORY IMPLIES A METHOD TO EXTEND L S
BEYOND LOCAL ANALYSIS

void f (bool a) {
bool b = a;
ar

}

MAY-BE VS MUST-BE ANALYSIS

GLOBAL DATAFLOW ANALYSIS

How WE JOIN VALUES IS BASED ON THE GOAL OF OUR ANALYSIS

volid f (bool a) {
bool b = a;
bool ¢ = a;
if (a){
b = true;
c = tTrue
} else {
b = true;
c = false;
}

return b;

}

CHAOTIC ITERATION

GLOBAL DATAFLOW ANALYSIS

0l. int x = 2;
02. if (g) {
IN WHAT ORDER DO WE PROCESS BLOCKS?
0l. int x = 2;
02. if (g) {
03. X =x - 1;
04. if (g2) {
05. X =x - 1;
06. }
07. 1}
08. return 1 / x;
07. }
08. return 1 / x;

31

TROUBLE ON THE HORIZON

GLOBAL DATAFLOW ANALYSIS

32

33

LOOPS ARE TOUGH TO HANDLE!

GLOBAL DATAFLOW ANALYSIS

ISSUES WITH LOOPS

- Generate lots of paths
- Cyclic data dependency

Oh, brother! You may have some loops

!.ELC;'::IJRE END!
s i V”{
‘ KX
\’”
\"

	Slide 1: ExerCise #8
	Slide 2: Administrivia and Announcements
	Slide 3: Dataflow Analysis
	Slide 4: Continue to Explore Static Analysis
	Slide 5: Last Time: Static Analysis
	Slide 6: Last Time: Static Analysis
	Slide 7: Last Time: Static Analysis
	Slide 8: Last Time: Static Analysis
	Slide 9: Last Time: Static Analysis
	Slide 10: Last Time: Static Analysis
	Slide 11: This Time: Addressing These problems
	Slide 12: This Time: Addressing These problems
	Slide 13: Lecture Outline
	Slide 14: The Art of Abstraction
	Slide 15: Modelling VALUES
	Slide 16: Modelling Instructions
	Slide 17: Modelling Instructions
	Slide 18: dataflow analysis
	Slide 19: Flow-Sensitive Analysis
	Slide 20: Lecture Outline
	Slide 21: Composing Transfer Functions
	Slide 22: An Early Win
	Slide 23: Formalizing Transfer Functions
	Slide 24: Memory As Value SEts
	Slide 25: Composing Value SEts
	Slide 26: Modelling Uncertainty
	Slide 27: Lecture Outline
	Slide 28: Composing Blocks
	Slide 29: Composing Blocks
	Slide 30: MAY-BE vs MUST-BE Analysis
	Slide 31: Chaotic Iteration
	Slide 32: Trouble on the Horizon
	Slide 33: Loops Are Tough to Handle!
	Slide 34: Lecture END!

