
EXERCISE #15

1

SIDE CHANNEL REVIEW

Write your name and answer the following on a piece of paper

Provide an instance of a function with a sensitive argument v and leaks a bit of v via a

timing side channel

EXERCISE #15: SOLUTION

2

SIDE CHANNEL REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

DEPENDENCE
RELATIONS
EECS 677: Software Security Evaluation

Drew Davidson

5

LAST TIME: SNEAKY DATAFLOW
REVIEW: SIDE CHANNELS

GENERAL SIDE-CHANNEL

– General side-channel: using a predictable phenomenon

outside of the semantics of the program

– Covert channel: special instance of a side channel that is

used intentionally by the program

– Either case: subverts the guarantee of a (naïve) static

dataflow
EXFILTRATED
YOUR DATA

With apologies to

IMPLICIT FLOW

– Launder a data dependency through a control

dependency

6

LAST TIME: TIMING SIDE CHANNELS
REVIEW: SIDE CHANNELS

A REAL-WORLD THREAT!

7

LAST TIME: TIMING SIDE CHANNELS
REVIEW: SIDE CHANNELS

A REAL-WORLD THREAT!

HOW TO FIX (IN SOFTWARE)?
– Best idea (that I know of): an elaboration on the dataflow facts

Ensure uniform operation between flows

8

LAST TIME: TIMING SIDE CHANNELS
REVIEW: SIDE CHANNELS

A REAL-WORLD THREAT!

HOW TO FIX (IN SOFTWARE)?
– Best idea (that I know of): an elaboration on the dataflow facts

Ensure uniform operation between flows

bool checkPW(const char * given){

 const char * expected = “12345”;

 int gLen = strlen(given);

 int eLen = strlen(expected);

 if (gLen != eLen){ return false; }

 for (int i = 0; i < eLen; i++){

 if (given[i] != expected[i]){

 return false;

 }

 }

 return true;

}

bool checkPW(const char * given){

 const char * expected = “12345”;

 int gLen = strlen(given);

 int eLen = strlen(expected);

 bool ok = true;

 if (gLen != eLen){ ok = false; }

 for (int i = 0; i < eLen; i++){

 int gIdx = math.min(gLen - 1, i);

 if (given[gIdx] != expected[i]){

 ok = false;

 }

 }

 return ok;

}

9

LAST TIME: SNEAKY DATAFLOW
REVIEW: SIDE CHANNELS

GENERAL SIDE-CHANNEL

– General side-channel: using a predictable phenomenon

outside of the semantics of the program

– Covert channel: special instance of a side channel that is

used intentionally by the program

– Either case: subverts the guarantee of a (naïve) static

dataflow
EXFILTRATED
YOUR DATA

With apologies to

IMPLICIT FLOW

– Launder a data dependency through a control

dependency

10

LAST TIME: SNEAKY DATAFLOW
REVIEW: SIDE CHANNELS

GENERAL SIDE-CHANNEL

– General side-channel: using a predictable phenomenon

outside of the semantics of the program

– Covert channel: special instance of a side channel that is

used intentionally by the program

– Either case: subverts the guarantee of a (naïve) static

dataflow

IMPLICIT FLOW

– Launder a data dependency through a control

dependency

Commonality: we don’t care about

particular values, we care about

dependency

THIS LECTURE

DELVING INTO DATA ABSTRACTIONS
THAT INDICATE DEPENDENCY

11

LECTURE OUTLINE

• Dependence relations

• Control Dependence

• Data Dependence

13

WHY DOES STATEMENT X DO THING Y?
DEPENDENCE RELATIONS

OFTEN INTERESTED IN A SUBSET
OF PROGRAM BEHAVIOR

What “influenced” statement X?

What did statement X “influence”?

USEFUL IN A VARIETY OF CONTEXTS

Consider a pointer… what might make it null?

ASSISTING SCALABILITY

Don’t get lost in details unrelated to my pointer / bug

14

APPLICATIONS
DEPENDENCE RELATIONS

PROACTIVE

What causes my program to crashing?

Does this statement leak data?

REACTIVE

Zoom in on a suspicious operation

LECTURE OUTLINE

• Dependence relations

• Control Dependence

• Data Dependence

16

“CONTROL RELIANCE” INTUITION
DEPENDENCE RELATIONS

CONSIDER THE FOLLOWING PROCEDURE…
What other statements decide whether a given statement

executes? void foo(){

1: READ i;

2: if (i == 1)

3: PRINT “hi!”

 else

4: i = 1;

5: PRINT i;

6: }

The outcome of Line 2 decides on whether Line 3 is executed

The outcome of Line 1 does not decide on whether Line 2 is executed

The outcome of Line 2 decides on whether Line 4 is executed

The outcome of Line 2 does not decide on whether Line 5 is executed

17

“CONTROL RELIANCE” INTUITION: IMMEDIACY
DEPENDENCE RELATIONS

MANY INSTRUCTIONS MAY CAUSE A SKIP-OVER

void foo(){

1: if (i == 1){

2: if (j == 1) {

3: if (k == 1){

4: PRINT “hi ”;

5: PRINT “there!”;

6: }

7: }

8: }

Line 5 relies on Line 1 and Line 2 and Line 3!

We’d say Line 4 “most closely” relies on Line 3 because there is

no instruction between line 3 and 4 that decides if Line 4 executes

Also convenient to say that every line in a procedure relies on the

entry to that procedure

CONTROL DEPENDENCE

Informally, an instruction X has a control dependence on Y if:

Statement Y decides whether X executes with no intervening decider

Related concept: MUST a statement A be executed for B to execute?

18

“CONTROL RELIANCE” INTUITION: IMMEDIACY
DEPENDENCE RELATIONS

MANY INSTRUCTIONS MAY CAUSE A SKIP-OVER

void foo(){

1: if (i == 1){

2: if (j == 1) {

3: if (k == 1){

4: PRINT “hi ”;

5: PRINT “there!”;

6: }

7: }

8: }

Line 5 relies on Line 1 and Line 2 and Line 3!

We’d say Line 4 “most closely” relies on Line 3 because there is

no instruction between line 3 and 4 that decides if Line 4 executes

Also convenient to say that every line in a procedure relies on the

entry to that procedure

CONTROL DEPENDENCE

Informally, an instruction X has a control dependence on Y if:

Statement Y decides whether X executes with no intervening decider

19

CONTROL DEPENDENCE
DEPENDENCE RELATIONS

void foo(){

1: READ i;

2: if (i == 1)

3: PRINT “hi!”

 else

4: i = 1;

5: PRINT i;

6: }

CAPTURE CONTROL DEPENDENCE IN
A DATA STRUCTURE

The control dependence graph

Related concept: MUST a statement A be executed for B to execute?

20

21

DOMINATORS
DEPENDENCE RELATIONS

22

POSTDOMINATION
DEPENDENCE RELATIONS

INTUITION ON CONTROL DEPENDENCE

What is the closest statement are you guaranteed to

execute?

1: READ i;

2: if (i == 1)

3: PRINT “hi!”

 else

4: i = 1;

5: PRINT i;

6: end

POSTDOMINATION

A Statement Y postdominates X ⇔ every path from X is

guaranteed to go through Y, denoted X in PDOM(Y)

Intuitively, X is “destined” to meet Y

A Statement Y immediately postdominates X ⇔ X in

PDOM(Y) and there is no intervening postdominator,

denoted X in IPDOM(Y)

23

BUILDING THE CDG
DEPENDENCE RELATIONS

(IMMEDIATE) FORWARD DOMINATORS

X IN IPDOM(Y) ⇔ Y in IFDOM(X)
1: READ i;

2: if (i == 1)

3: PRINT “hi!”

 else

4: i = 1;

5: PRINT i;

6: end

2 in IPDOM 5

5 in IFDOM 2

24

BUILDING THE CDG
DEPENDENCE RELATIONS

1: READ i;

2: if (i == 1)

3: PRINT “hi!”

 else

4: i = 1;

5: PRINT i;

6: end

Y is control dependent on X ⇔ there is a path in the CFG

from X to Y that doesn’t contain the immediate forward

dominator of X

LECTURE OUTLINE

• Dependence relations

• Control Dependence

• Data Dependence

26

DATA DEPENDENCE
DEPENDENCE RELATIONS

1: READ i;

2: if (i == 1)

3: PRINT “hi!”

 else

4: i = 1;

5: PRINT i;

6: end

Influence is more than control, it’s also what values

mattered to your behavior

Note here: 1 might have set 5,

but it’s not control dependent!

27

THE DATA DEPENDENCE GRAPH
DEPENDENCE RELATIONS

1: READ i;

2: if (i == 1)

3: PRINT “hi!”

 else

4: i = 1;

5: PRINT i;

6: end

Depiction of the reaching definitions of each statement

28

NEXT TIME
DEPENDENCE RELATIONS

CONSIDER THE PROGRAM SLICE

Forward Slice: the portions of the program a given

statement influences

Backwards Slice: the portions of the program influenced by

a give statement

WRAP-UP

	Slide 1: Exercise #15
	Slide 2: Exercise #15: Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Dependence Relations
	Slide 5: Last Time: Sneaky Dataflow
	Slide 6: Last Time: Timing side Channels
	Slide 7: Last Time: Timing side Channels
	Slide 8: Last Time: Timing side Channels
	Slide 9: Last Time: Sneaky Dataflow
	Slide 10: Last Time: Sneaky Dataflow
	Slide 11: This Lecture
	Slide 12: Lecture Outline
	Slide 13: Why does statement X Do Thing Y?
	Slide 14: Applications
	Slide 15: Lecture Outline
	Slide 16: “Control Reliance” Intuition
	Slide 17: “Control Reliance” Intuition: Immediacy
	Slide 18: “Control Reliance” Intuition: Immediacy
	Slide 19: Control Dependence
	Slide 20
	Slide 21: Dominators
	Slide 22: PostDomination
	Slide 23: Building the CDG
	Slide 24: Building the CDG
	Slide 25: Lecture Outline
	Slide 26: Data Dependence
	Slide 27: The Data Dependence Graph
	Slide 28: Next Time
	Slide 29: Wrap-up

