EXERCISE #15

SIDE CHANNEL REVIEW
Write your name and answer the following on a piece of paper

Provide an instance of a function with a sensitive argument v and leaks a bit of v via a
timing side channel

EXERCISE #15: SOLUTION
SIDE CHANNEL REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

DEPENDENCE
RELATIONS

EECS 677: Software Security Evaluation

Drew Davidson

LAST TIME: SNEAKY DATAFLOW

REVIEW: SIDE CHANNELS

(

_

GENERAL SIDE-CHANNEL

— General side-channel: using a predictable phenomenon
outside of the semantics of the program

— Covert channel: special instance of a side channel that is
used intentionally by the program

— Either case: subverts the guarantee of a (naive) static
dataflow

IMPLICIT FLOW

— Launder a data dependency through a control
dependency

I'M A SNEAKY FOX

r
4
.’jv " ;‘%ﬂ e
7
74 V74

SNEAKED IN
YOUR HOUSE

COVCH

ATE YOUR | EXFILTRATED

PASTA YOUR DATA

» (R, LD, LT

©Li Chen

With apologies to cxocomics.com

LAST TIME: TIMING SIDE CHANNELS

REVIEW: SIDE CHANNELS

A REAL-WORLD THREAT!

Mitigating Information Leakage Based on Variable Timing

Operations such as message authentication code (MAC), RSA signature padding, and
password processing are especially susceptible to timing side channel attacks. These
operations include a step that compares two values. If the comparison time is dependent
on the inputs, malicious actors can use the timing differences to learn valuable
information. This type of attack, known as an oracle attack’, can target processes that
are not vulnerable to speculative execution side channels and can operate at an API

level.
I - 00

Developers Topics & Technologies v Software Security Guidance v Best Practices Side Chl

Guidelines for Mitigating Timing Side Channels Against Cryptographic
Implementations

ID 758403

Updated 6/29/2022

Version 2.1

Public

LAST TIME: TIMING SIDE CHANNELS

REVIEW: SIDE CHANNELS

A REAL-WORLD THREAT!

How TO FIX (IN SOFTWARE)?

— Best idea (that | know of): an elaboration on the dataflow facts

Ensure uniform operation between flows

Mr. Fixit

LAST TIME: TIMING SIDE CHANNELS

REVIEW: SIDE CHANNELS

A REAL-WORLD THREAT!

How TO FIX (IN SOFTWARE)?

— Best idea (that | know of): an elaboration on the dataflow facts

Ensure uniform operation between flows

bool checkPW (const char * given) {

const char * expected = “12345";
int gLen = strlen(given);

int elLen = strlen (expected);

1f (gLen != elen){ return false;

for (int 1 = 0; 1 < elen; 1++) {
1f (given[i] != expected[1]) {
return false;

}

return true;

}

valih| e

bool checkPW (const char * given) {

const char * expected = “12345”;

int glhen = strlen(given);

int elen = strlen(expected);

bool ok = true;

if (gLen != elen){lok = false; }

for (int 1 = 0; 1 < elen; 1i++){
int gldx = math.min(glen - 1
if (given[gldx] != expected]

ok = false;

1);
) {

1]

}

return ok;

LAST TIME: SNEAKY DATAFLOW

REVIEW: SIDE CHANNELS

GENERAL SIDE-CHANNEL

— General side-channel: using a predictable phenomenon
outside of the semantics of the program

— Covert channel: special instance of a side channel that is
used intentionally by the program

I'M A SNEAKY FOX

SNEAKED IN
YOUR HOUSE

— Ei : ntee of a (naive) static

IMPLICIT FLOW

— Launder a data dependency through a control
dependency

Q' \L{ ©Li Chen

v\@e

EXFILTRATED
YOUR DATA

With apologies to cxocomics.com

LAST TIME: SNEAKY DATAFLOW

REVIEW: SIDE CHANNELS

GENERAL SIDE-CHANNEL

— General side-channel: using a predictable phenomenon
outside of the semantics of the program

— Covert channel: special instance of a side channel that is
used intentionally by the program

— Either case: subverts the guarantee of a (naive) static
dataflow

IMPLICIT FLOW

— Launder a data dependency through a control
dependency

Commonality: we don’t care about

—— particular values, we care about
dependency

10

(<

2R

THIS LECTURE

DELVING INTO DATA ABSTRACTIONS
l THAT INDICATE DEPENDENCY

@

LECTURE OUTLINE /‘\
* Dependence relations /\V Q
* Control Dependence ‘
* Data Dependence ‘
I

N
\y,

WHY DOES STATEMENT X DO THING Y?

DEPENDENCE RELATIONS

OFTEN INTERESTED IN A SUBSET
OF PROGRAM BEHAVIOR

What “influenced” statement X?

What did statement X “influence”?

USEFUL IN A VARIETY OF CONTEXTS

Consider a pointer... what might make it null?

ASSISTING SCALABILITY

Don’t get lost in details unrelated to my pointer / bug

13

PROACTIVE

What causes my program to crashing?

Does this statement leak data?

REACTIVE

Zoom in on a suspicious operation

APPLICATIONS

DEPENDENCE RELATIONS

14

@

LECTURE OUTLINE /‘\
* Dependence relations /\V Q
* Control Dependence ‘
* Data Dependence ‘
I

N
\y,

“CONTROL RELIANCE” INTUITION

DEPENDENCE RELATIONS

CONSIDER THE FOLLOWING PROCEDURE...

What other statements decide whether a given statement
executes?

The outcome of Line 2 decides on whether Line 3 is executed

The outcome of Line 2 decides on whether Line 4 is executed

The outcome of Line 1 does not decide on whether Line 2 is executed

The outcome of Line 2 does not decide on whether Line 5 is executed

volid foo () {

1: READ 1i;

2: if (i1 == 1)

3: PRINT “hi!”
else

4 i =1;

5: PRINT 1i;

o: }

16

“CONTROL RELIANCE” INTUITION: IMMEDIACY

DEPENDENCE RELATIONS

MANY INSTRUCTIONS MAY CAUSE A SKIP-OVER

Line 5 relies on Line 1 and Line 2 and Line 3!

Also convenient to say that every line in a procedure relies on the
entry to that procedure

We’d say Line 4 “most closely” relies on Line 3 because there is
no instruction between line 3 and 4 that decides if Line 4 executes

CONTROL DEPENDENCE

Informally, an instruction X has a control dependence on Y if:
Statement Y decides whether X executes with no intervening decider

Related concept: MUST a statement A be executed for B to execute?

void foo () {
if (1 == 1){
if (3 == 1) |
if (k == 1){
PRINT “hi ”;
PRINT Y“there!”;

O 1 o Ul i W DN K

“CONTROL RELIANCE” INTUITION: IMMEDIACY

DEPENDENCE RELATIONS

MANY INSTRUCTIONS MAY CAUSE A SKIP-OVER

Line 5 relies on Line 1 and Line 2 and Line 3!

Also convenient to say that every line in a procedure relies on the
entry to that procedure

We’d say Line 4 “most closely” relies on Line 3 because there is
no instruction between line 3 and 4 that decides if Line 4 executes

CONTROL DEPENDENCE

Informally, an instruction X has a control dependence on Y if:
Statement Y decides whether X executes with no intervening decider

void foo () {
if (1 == 1){
if (3 == 1) |
if (k == 1){
PRINT “hi ”;
PRINT Y“there!”;

O 1 o Ul i W DN K

CONTROL DEPENDENCE

DEPENDENCE RELATIONS

void foo () {

CAPTURE CONTROL DEPENDENCE IN 1: READ i;
A DATA STRUCTURE 2: 1if (1 ==1)
3: PRINT “hi!”
The control dependence graph else
4 i = 1;
5: PRINT 1i;
o: }

Related concept: MUST a statement A be executed for B to execute?

CDG
entry

DOMINATORS

DEPENDENCE RELATIONS

POSTDOMINATION

DEPENDENCE RELATIONS

INTUITION ON CONTROL DEPENDENCE

1: READ 1i;
What is the closest statement are you guaranteed to 2: 1if (1 == 1)

3 PRINT “hi!”
execute?

else

4. i =1;
POSTDOMINATION 5: PRINT 1i;
A Statement Y postdominates X & every path from X is o: end ? &'\' HOM
guaranteed to go through Y, denoted X in PDOM(Y) 5 e
Intuitively, X is “destined” to meet Y S AY/

2 3 4

A Statement Y immediately postdominates X & X in 1

PDOM(Y) and there is no intervening postdominator,

denoted X in IPDOM(Y)

BUILDING THE CDG

DEPENDENCE RELATIONS

(IMMEDIATE) FORWARD DOMINATORS

X IN IPDOM(Y) € Y in IFDOM(X)

1: READ 1i;
2: 1f (1 == 1)
3: PRINT “hi!”
else
4. i =1;
5: PRINT 1i;
6: end
2 in IPDOM 5
5in IFDOM 2 ?6

23

BUILDING THE CDG

DEPENDENCE RELATIONS

Y is control dependent on X & there is a path in the CFG

from X to Y that doesn’t contain the immediate forward

dominator of X

N

ol

READ 1;
if (1 == 1)
PRINT “hi!”
else
i=1;
PRINT 1i;
end

2

4!‘

Y
5 L ifdom(2) = 5
6
E

1 2 5 6

3 tSy

4 CD 2

@

LECTURE OUTLINE /‘\
* Dependence relations /\V Q
* Control Dependence ‘
* Data Dependence ‘
I

N
\y,

DATA DEPENDENCE

DEPENDENCE RELATIONS

Influence is more than control, it’s also what values
mattered to your behavior

N

ol

READ 1;
if (1 == 1)
PRINT “hi!”
else
i=1;
PRINT 1i;
end

X . 2
3 4
Y
5
> 6
E
1 2 5 6
30 'og
4CD 2

Note here: 1 might have set 5,
but it’s not control dependent!

Depiction of the reaching definitions of each statement

N

ol

THE DATA DEPENDENCE GRAPH

: READ 1i;
: 1f (1 == 1)

PRINT “hi!”
else
i = 1;

: PRINT 1i;
: end

DEPENDENCE RELATIONS

4 CD 2

NEXT TIME

DEPENDENCE RELATIONS

CONSIDER THE PROGRAM SLICE
Forward Slice: the portions of the program a given
statement influences

Backwards Slice: the portions of the program influenced by

a give statement

28

	Slide 1: Exercise #15
	Slide 2: Exercise #15: Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Dependence Relations
	Slide 5: Last Time: Sneaky Dataflow
	Slide 6: Last Time: Timing side Channels
	Slide 7: Last Time: Timing side Channels
	Slide 8: Last Time: Timing side Channels
	Slide 9: Last Time: Sneaky Dataflow
	Slide 10: Last Time: Sneaky Dataflow
	Slide 11: This Lecture
	Slide 12: Lecture Outline
	Slide 13: Why does statement X Do Thing Y?
	Slide 14: Applications
	Slide 15: Lecture Outline
	Slide 16: “Control Reliance” Intuition
	Slide 17: “Control Reliance” Intuition: Immediacy
	Slide 18: “Control Reliance” Intuition: Immediacy
	Slide 19: Control Dependence
	Slide 20
	Slide 21: Dominators
	Slide 22: PostDomination
	Slide 23: Building the CDG
	Slide 24: Building the CDG
	Slide 25: Lecture Outline
	Slide 26: Data Dependence
	Slide 27: The Data Dependence Graph
	Slide 28: Next Time
	Slide 29: Wrap-up

