EXERCISE #26

CONTROL FLOW INTEGRITY REVIEW

Write your name and answer the following on a piece of paper

Of the various CFI solutions we explored, none were calling-context sensitive. Why
not?

EXERCISE #26 SOLUTION
CONTROL FLOW INTEGRITY REVIEW

\@%"f

TESTING

EECS 677: Software Security Evaluation

Drew Davidson

ADMINISTRIVIA
AND
ANNOUNCEMENTS

LAST TIME: CONTROL-FLOW INTEGRIT

REVIEW: COMPUTABILITY

Instrument the program to prevent “illegal” jumps

e Intel CET
* Microsoft control-flow guard
* Clanginstruction injection

TURNING THE PAGE ON THIS CLASS

NEXT TOPIC

Hopefully, you’ve got a taste of the
challenges / benefits of

instrumentation and mediation

e Static cost/benefit
Runtime cost/benefit

TURNING THE PAGE ON THIS CLASS

NEXT TOPIC

Dynamic Analysis
Running the program to see what happens

Uses of dynamic analysis
Program comprehension

Bug elimination 6\

Dc\cér w\wwx/ WwITH A STICK

o Lo A
S

o

9

LECTURE OUTLINE \\

* The Testing Perspective ' //\‘V"‘X

* Test Generat ion /‘
W&

%

A FORMULATION OF DYNAMIC ANALYSIS

TESTING

Input/expected output pairs

* Does the program do what it’s supposed to do?

TEST SUITES

TESTING

Ideally, we’ll capture a variety of behaviors
« We'll refer to the collection of test cases as our test suite

Regression suite
e Capturing sufficient behavior enables capture of
breaking changes

Generate Pass the Release the Update the
Test Suite Test Suite? System System

NON-DETERMINISM

TESTING

Factor out external details into the

environment

* Timeis aninput

e Random seed is an input
 Network response is an input

11

TESTING SCOPE

TESTING

Unit testing

* Testing at the submodule level (e.g. function i/o)

Integration testing
 Testing at the boundary between modules (e.g.
library interfaces)

Application testing

e Testing at the whole-program level

12

PROGRAM VISIBILITY

CATEGORIZING ANALYSIS

White box

* Testing with “complete” information about the
analysis target (typically means source code)

Black box

e Testing with “no” information about how the
analysis target is architected (typically means
binary only)

%

Grey box

e Testing with “some” information about how the
analysis target is architected (binary + some static
analysis / probing)

CLASSIC LIMITATIONS OF TESTING

TEST GENERATION

It’s hard to predict what might go wrong (presumably you’d have fixed it in this first place)

“FIXING” TESTING

TEST GENERATION

It’s hard to predict what might go ICAMFIY IT?
wrong (presumably you’d have fixed Ben

it in this first place) d N

* Could try to make a more
intentional correspondence (TDD)

* Could try to leverage tools
(Fuzzing)

TEST-DRIVEN DEVELOPMENT

CATEGORIZING ANALYSIS

Write a
failing test

1. Write a test case (expecting it to fail)
2. Implement enough functionality to pass the test case T D D
3. Fix up the program Make the

Refactor test pass

(repeat)

17

18

TESTING VS STATIC ANALYSIS

TEST GENERATION

A fight (I guess?) in the software engineering community

The clean code blog
“The Dark Path”, 1/2017
“Tools are not the Answer”, 10/2017

| think that good software tools make it easier to
write good software. However, tools are not the
answer to the “Apocalypse”.

Nowhere in the article did the author examine the
possibility that programmers are generally
undisciplined.

Ask yourself why we are trying to plug defects with language
features. The answer ought to be obvious. We are trying to plug
these defects because these defects happen too often.

Now, ask yourself why these defects happen too often. If your
answer is that our languages don’t prevent them, then |
strongly suggest that you quit your job and never think about
being a programmer again; because defects are never the fault
of our languages. Defects are the fault of programmers. It

is programmers who create defects — not languages.

And what is it that programmers are supposed to do to prevent
defects? I'll give you one guess. Here are some hints. It’s a verb.
It starts with a “T”. Yeah. You got it. TEST!

TEST GENERATION

Integrating testing into a workflow

googletest

apt install googletest
apt install libgtest-dev

SOME DIFFICULTIES OF UNIT TESTING

=3

googletest

(zo0gle L++ Testing Framewark

19

SOME DIFFICULTIES OF UNIT TESTING

TEST GENERATION

What to do about a function’s “environment”?

Automatically creating test cases

FUZZING

CATEGORIZING ANALYSIS

21

	Slide 1: ExerCise #26
	Slide 2: ExerCise #26 Solution
	Slide 3: Testing
	Slide 4: Administrivia and Announcements
	Slide 5: Last Time: Control-Flow Integrity
	Slide 6: Turning the page on this class
	Slide 7: Turning the page on this class
	Slide 8: Lecture Outline
	Slide 9: A formulation of dynamic Analysis
	Slide 10: Test Suites
	Slide 11: Non-determinism
	Slide 12: Testing scope
	Slide 13: Program Visibility
	Slide 14: Lecture Outline
	Slide 15: Classic Limitations of Testing
	Slide 16: “FiXing” Testing
	Slide 17: Test-Driven Development
	Slide 18: Testing vs Static Analysis
	Slide 19: Some difficulties of unit testing
	Slide 20: Some difficulties of unit testing
	Slide 21: Fuzzing
	Slide 22

