EXERCISE 28

CONTROL FLOW INTEGRITY REVIEW

Write your name and answer the following on a piece of paper

Of the various CFI solutions we explored, none were calling-context sensitive. Why
not?

\@%"f

TESTING

EECS 677: Software Security Evaluation

Drew Davidson

Midpoint Survey Live: https://analysis.cool/midpoint

ADMINISTRIVIA
AND
ANNOUNCEMENTS

https://analysis.cool/midpoint

LAST TIME: CONTROL-FLOW INTEGRIT

REVIEW: COMPUTABILITY

Instrument the program to prevent “illegal” jumps

e Intel CET
* Microsoft control-flow guard
* Clanginstruction injection

TURNING THE PAGE ON THIS CLASS

NEXT TOPIC

Hopefully, you’ve got a taste of the
challenges / benefits of

instrumentation and mediation

e Static cost/benefit
Runtime cost/benefit

TURNING THE PAGE ON THIS CLASS

NEXT TOPIC

Dynamic Analysis
* Running the program to see what happens

Uses of dynamic analysis
 Program comprehension

* Bug elimination
IT

WITH A STICK

</

}Q‘

A\
oo /(] //‘:
* Test Generation (l“
* Fuzzing ‘ ‘\’)
%

A FORMULATION OF DYNAMIC ANALYSIS

TESTING

Input/expected output pairs

* Does the program do what it’s supposed to do?

TEST SUITES

TESTING

Ideally, we’ll capture a variety of behaviors
« We'll refer to the collection of test cases as our test suite

Regression suite
e Capturing sufficient behavior enables capture
breaking changes

A

Generate Pass the Release the Update the
j Test Suite Test Suite? System System

NON-DETERMINISM

TESTING

Factor out external details into the

environment

* Timeis aninput

e Random seed is an input
 Network response is an input

10

TESTING SCOPE

TESTING

Unit testing

* Testing at the submodule level (e.g. function i/o)

Integration testing
 Testing at the boundary between modules (e.g.
library interfaces)

Application testing

e Testing at the whole-program level

11

PROGRAM VISIBILITY

CATEGORIZING ANALYSIS

White box

* Testing with “complete” information about the
analysis target (typically means source code)

Black box

e Testing with “no” information about how the
analysis target is architected (typically means
binary only)

%

Grey box

e Testing with “some” information about how the
analysis target is architected (binary + some static
analysis / probing)

</

}Q‘

A\
oo /(] //‘:
* Test Generation (l“
* Fuzzing ‘ ‘\’)
%

CLASSIC LIMITATIONS OF TESTING

TEST GENERATION

It’s hard to predict what might go wrong (presumably you’d have fixed it in this first place)

“FIXING” TESTING

TEST GENERATION

It’s hard to predict what might go ICAMFIX IT?
wrong (presumably you’d have fixed Ban

it in this first place) d N2

* Could try to make a more ‘
intentional correspondence (TDD)

* Could try to leverage tools
(Fuzzing)

TEST-DRIVEN DEVELOPMENT

CATEGORIZING ANALYSIS

Write a
failing test

1. Write a test case (expecting it to fail)
2. Implement enough functionality to pass the test case T D D
3. Fix up the program Make the

Refactor test pass

(repeat)

16

17

TESTING VS STATIC ANALYSIS

TEST GENERATION

A fight (I guess?) in the software engineering community

The clean code blog
“The Dark Path”, 1/2017
“Tools are not the Answer”, 10/2017

| think that good software tools make it easier to
write good software. However, tools are not the
answer to the “Apocalypse”.

Nowhere in the article did the author examine the
possibility that programmers are generally
undisciplined.

Ask yourself why we are trying to plug defects with language
features. The answer ought to be obvious. We are trying to plug
these defects because these defects happen too often.

Now, ask yourself why these defects happen too often. If your
answer is that our languages don’t prevent them, then |
strongly suggest that you quit your job and never think about
being a programmer again; because defects are never the fault
of our languages. Defects are the fault of programmers. It

is programmers who create defects — not languages.

And what is it that programmers are supposed to do to prevent
defects? I'll give you one guess. Here are some hints. It’s a verb.
It starts with a “T”. Yeah. You got it. TEST!

18

SOME DIFFICULTIES OF UNIT TESTING

TEST GENERATION

Integrating testing into a workflow

googletest .
apt install googletest |
apt install libgtest-dev

What to do about a function’s “environment”? g Oﬂg ‘Ete St

(zoogle C++ Testing Framework

</

}Q‘

A\
oo /(] //‘:
* Test Generation (l“
* Fuzzing ‘ ‘\’)
%

FUZZING

CATEGORIZING ANALYSIS

GENERATING GOOD TEST CASES
Cases that increase coverage of program behaviors

Cases that exercise unexpected behavior

PREVIOUS STABS AT THIS TOPIC

Consider testing as an intrinsic part of the SSDLC
methodology

Test-driven development

Post-hoc evaluation via coverage metrics

TODAY: JUST GUESS

The random “fuzz” of white noise

20

HISTORY OF FUZZING

FUZZING

1988: IT wAS A DARK AND STORMY NIGHT

Professor Bart Miller attempts to work from home...

WISCONSIN

UNIVERSITY OF WISCOMSIM-MADISOM

‘ noise
Telnet —

Connection Well-formed Nonsense

Program

Commands Commands

21

22

BREAKING CIRCULAR LOGIC

FUZZING

AUTOMATED TEST CASE GENERATION RESOLVES A

FUNDAMENTAL CONFLICT IN TESTING... ' rea
\> So
2,

Tautologically impossible to predict unpredictable o
behavior o
-~y

Apply a technique that obviated the need for '

-

expectations 0 m
@

S

%

e@aq 5*,

GRACEFUL FAILURE

FUZZING

Any error should be anticipated and handled by the
system, with an informative error message should
recovery become impossible

A KEY PRINCIPLE IN THE VALIDITY OF FUZZING

“The user should never see a seg fault”

TECHNICAL DIFFICULTIES
PLEASE STAND BY

23

EXPLORING UNEXPECTED BEHAVIOR

FUZZING

RANDOM INPUT IS SURPRISINGLY EFFECTIVE

Numerous bugs found in practice via fuzzing...

Busybox utilities
Windows bugs

Linux Kernel bugs

BENEFITS OF FUZZING
Very easy to run
Instant results

Highly scalable

24

THE SIMPLEST FUZZER

FUZZ TESTING

THE MOST BASIC FORM OF FUZZING

cat /dev/random | program

A study in the 90s basically did this, finding bugs in...
adb, as, bc, cb, col, diction, emacs, egn, ftp, indent, lex,

look, m4, make, nroff, plot, prolog, ptx, refer!, spell, style,
tsort, uniq, vgrind, vi

PRIORITIZING INPUT

FUZZING

THE CHALLENGE OF FUZZERS IS (USUALLY) GETTING PAST THE FIRST VALIDATION
CHECK

1f (!sane input()) {
exit 1;

}
//The rest of the program

T
{“H“tamﬁ

L EL/] I\UH“/\

SIMPLE TESTING STRATEGY

FUZZING
N

f@%g ¢l)rlluwu\ ! /

CONSIDER “INTERESTING” INPUT

Values close to the maximum, minimum, middle, etc

CASE STuDY: CARD READER INPUT: [FRISBY ET AL., 2012]

([
([l
(W

MUTATION-BASED FUZZERS

FUZZING

EXPLORE DEVIATIONS FROM KNOWN INPUT

Example mutations:

Binary input

— Bit flips

- Byte flips

- Change random bytes

- Insert random byte chunks

- Delete random byte chunks

- Set randomly chosen byte chunks to interesting
values e.g. INT_MAX, INT_MIN, O, 1, -1, ... §

Text input

- Insert random symbols or keywords from a dictionary

BLACK-BOX FUZZING

FUZZING

THROW RANDOM INPUT AT THE APPLICATION INTERFACE

29

REPRESENTATIVE TOOL: ZZUF

BLACK-BOX FUZZING

THE “MULTIPURPOSE FUZZER”

zzuf cat /dev/zero | hd -vn 32

zzuf -r 0.05 hd -vn 32 /dev/zero

30

7// WHITE-BOX FUZZING
FUZZING

THROW RANDOM INPUT AT THE UNIT INTERFACE

z

REPRESENTATIVE TOOL: AFL

FUZZING

AFL (AMERICAN Fuzzy Lop)

Maintained by Google

STATE OF THE ART

Generally considered the best, state-of-the-art fuzzer

32

REPRESENTATIVE TOOL: AFL

FUZZING

EXAMPLE COMMAND american fuzzy lop ++4.00c
“TRADITIONAL FUZZING” e nltine 10 davs. 6 hrel fimin 39 e
(non-instrumented mode) B B
none seen yet
none seen yet
0*13 (0.0%) 4 “map density : ©.00% / 0.08%
mkdir in dir 0 (0.00%) - 0.00 bits/tuple
echo “hello” > in_dir/hello 5 : havoc . ored 0 (0.00%)
.. . . 78/512 (15.23%) : RCR)
afl-fuzz -n -i in_dir -o out_dir cat 6360 : 8l(0 <aved)

=

1 (1 saved)
disabled (default, enable with

disabled (default, enable with

disabled (default, enable with

disabled (default, enable with

n/a

0/6272, 0/0

unused, unused, unused, unused

n/a, disabled

REPRESENTATIVE TOOL: AFL

FUZZING

INSTRUMENTATION MODE

1) Compile the program with
coverage probes

2) Attempt to prioritize / mutate
test cases that extend
coverage

afl-clang++ <build command>

GENERATION-BASED FUZZING

FUZZING

ATTEMPT TO DISCERN PATTERNS / ALTERNATIVES IN INPUT

Potentially with the help of some guide of guide / input grammar

FUZZING ORACLES

FUZZING

BEYOND GRACEFUL FAILURE

In C/C++ there are a lot of violations of proper behavior that are invisible
“Seems fine until it’s a huge problem”

SANITIZERS

UBSan — Undefined behavior sanitizer
ASan — Address sanitizer
TSan — Thread sanitizer

RESEARCH DIRECTION: “GUNKING”

FUZZING

FUZZING AS ADVERSARIAL RECON

Fuzzing is so good at finding bugs that even the bad guys do it

PERHAPS A PROGRAM SHOULD DEPLOY ANTI-FUZZING TECH

What would that look like?

	Slide 1: Exercise 28
	Slide 2: Testing
	Slide 3: Administrivia and Announcements
	Slide 4: Last Time: Control-Flow Integrity
	Slide 5: Turning the page on this class
	Slide 6: Turning the page on this class
	Slide 7: Lecture Outline
	Slide 8: A formulation of dynamic Analysis
	Slide 9: Test Suites
	Slide 10: Non-determinism
	Slide 11: Testing scope
	Slide 12: Program Visibility
	Slide 13: Lecture Outline
	Slide 14: Classic Limitations of Testing
	Slide 15: “FiXing” Testing
	Slide 16: Test-Driven Development
	Slide 17: Testing vs Static Analysis
	Slide 18: Some difficulties of unit testing
	Slide 19: Lecture Outline
	Slide 20: Fuzzing
	Slide 21: History of Fuzzing
	Slide 22: breaking circular logic
	Slide 23: Graceful Failure
	Slide 24: Exploring unexpected Behavior
	Slide 25: The Simplest Fuzzer
	Slide 26: Prioritizing Input
	Slide 27: Simple Testing Strategy
	Slide 28: Mutation-Based Fuzzers
	Slide 29: Black-Box Fuzzing
	Slide 30: Representative Tool: zzuf
	Slide 31: White-Box Fuzzing
	Slide 32: Representative Tool: AFL
	Slide 33: Representative Tool: AFL
	Slide 34: Representative Tool: AFL
	Slide 35: Generation-Based Fuzzing
	Slide 36: Fuzzing Oracles
	Slide 37: Research Direction: “Gunking”
	Slide 38

