
EXERCISE 28

1

CONTROL FLOW INTEGRITY REVIEW

Write your name and answer the following on a piece of paper

Of the various CFI solutions we explored, none were calling-context sensitive. Why

not?

TESTING
EECS 677: Software Security Evaluation

Drew Davidson

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Midpoint Survey Live: https://analysis.cool/midpoint

https://analysis.cool/midpoint

LAST TIME: CONTROL-FLOW INTEGRITY
4

REVIEW: COMPUTABILITY

Instrument the program to prevent “illegal” jumps
• Intel CET
• Microsoft control-flow guard
• Clang instruction injection

TURNING THE PAGE ON THIS CLASS
5

NEXT TOPIC

Hopefully, you’ve got a taste of the
challenges / benefits of
instrumentation and mediation
• Static cost/benefit
• Runtime cost/benefit

TURNING THE PAGE ON THIS CLASS
6

NEXT TOPIC

Dynamic Analysis
• Running the program to see what happens

Uses of dynamic analysis
• Program comprehension
• Bug elimination

LECTURE OUTLINE

• The Testing Perspective

• Test Generation

• Fuzzing

A FORMULATION OF DYNAMIC ANALYSIS

8

TESTING

Input/expected output pairs
• Does the program do what it’s supposed to do?

TEST SUITES
9

TESTING

Regression suite
• Capturing sufficient behavior enables capture of

breaking changes

Generate

Test Suite

Pass the

Test Suite?

Release the

System

Update the

System

Ideally, we’ll capture a variety of behaviors
• We’ll refer to the collection of test cases as our test suite

NON-DETERMINISM
10

TESTING

Factor out external details into the
environment
• Time is an input
• Random seed is an input
• Network response is an input

TESTING SCOPE
11

TESTING

Unit testing
• Testing at the submodule level (e.g. function i/o)

Integration testing
• Testing at the boundary between modules (e.g.

library interfaces)

Application testing
• Testing at the whole-program level

12

PROGRAM VISIBILITY
CATEGORIZING ANALYSIS

White box
• Testing with “complete” information about the

analysis target (typically means source code)

Black box
• Testing with “no” information about how the

analysis target is architected (typically means
binary only)

Grey box
• Testing with “some” information about how the

analysis target is architected (binary + some static
analysis / probing)

LECTURE OUTLINE

• The Testing Perspective

• Test Generation

• Fuzzing

14

CLASSIC LIMITATIONS OF TESTING
TEST GENERATION

It’s hard to predict what might go wrong (presumably you’d have fixed it in this first place)

15

“FIXING” TESTING
TEST GENERATION

It’s hard to predict what might go

wrong (presumably you’d have fixed

it in this first place)

• Could try to make a more

intentional correspondence (TDD)

• Could try to leverage tools

(Fuzzing)

16

TEST-DRIVEN DEVELOPMENT
CATEGORIZING ANALYSIS

1. Write a test case (expecting it to fail)

2. Implement enough functionality to pass the test case

3. Fix up the program

(repeat)

17

TESTING VS STATIC ANALYSIS
TEST GENERATION

A fight (I guess?) in the software engineering community

The clean code blog

“The Dark Path”, 1/2017

“Tools are not the Answer”, 10/2017

Ask yourself why we are trying to plug defects with language
features. The answer ought to be obvious. We are trying to plug
these defects because these defects happen too often.

Now, ask yourself why these defects happen too often. If your
answer is that our languages don’t prevent them, then I
strongly suggest that you quit your job and never think about
being a programmer again; because defects are never the fault
of our languages. Defects are the fault of programmers. It
is programmers who create defects – not languages.

And what is it that programmers are supposed to do to prevent
defects? I’ll give you one guess. Here are some hints. It’s a verb.
It starts with a “T”. Yeah. You got it. TEST!

I think that good software tools make it easier to
write good software. However, tools are not the
answer to the “Apocalypse”.

Nowhere in the article did the author examine the
possibility that programmers are generally
undisciplined.

18

SOME DIFFICULTIES OF UNIT TESTING
TEST GENERATION

Integrating testing into a workflow

googletest

apt install googletest

apt install libgtest-dev

What to do about a function’s “environment”?

LECTURE OUTLINE

• The Testing Perspective

• Test Generation

• Fuzzing

20

FUZZING
CATEGORIZING ANALYSIS

GENERATING GOOD TEST CASES

Cases that exercise unexpected behavior

Cases that increase coverage of program behaviors

PREVIOUS STABS AT THIS TOPIC

The random “fuzz” of white noise

Consider testing as an intrinsic part of the SSDLC

methodology

Test-driven development

Post-hoc evaluation via coverage metrics

TODAY: JUST GUESS

21

HISTORY OF FUZZING
FUZZING

1988: IT WAS A DARK AND STORMY NIGHT

Professor Bart Miller attempts to work from home…

Telnet

Connection

noise

Nonsense

Commands

Program

Crash!Well-formed

Commands

22

BREAKING CIRCULAR LOGIC
FUZZING

AUTOMATED TEST CASE GENERATION RESOLVES A
FUNDAMENTAL CONFLICT IN TESTING…

Tautologically impossible to predict unpredictable

behavior

Apply a technique that obviated the need for

expectations

23

GRACEFUL FAILURE
FUZZING

Any error should be anticipated and handled by the

system, with an informative error message should

recovery become impossible

A KEY PRINCIPLE IN THE VALIDITY OF FUZZING

“The user should never see a seg fault”

24

EXPLORING UNEXPECTED BEHAVIOR
FUZZING

RANDOM INPUT IS SURPRISINGLY EFFECTIVE

Numerous bugs found in practice via fuzzing…

Busybox utilities

Windows bugs

Linux Kernel bugs

BENEFITS OF FUZZING

Very easy to run

Instant results

Highly scalable

25

THE SIMPLEST FUZZER
FUZZ TESTING

THE MOST BASIC FORM OF FUZZING

cat /dev/random | program

A study in the 90s basically did this, finding bugs in…

adb, as, bc, cb, col, diction, emacs, eqn, ftp, indent, lex,

look, m4, make, nroff, plot, prolog, ptx, refer!, spell, style,

tsort, uniq, vgrind, vi

26

PRIORITIZING INPUT
FUZZING

THE CHALLENGE OF FUZZERS IS (USUALLY) GETTING PAST THE FIRST VALIDATION
CHECK

if (!sane_input()){

 exit 1;

}

//The rest of the program

27

SIMPLE TESTING STRATEGY
FUZZING

CONSIDER “INTERESTING” INPUT

Values close to the maximum, minimum, middle, etc

CASE STUDY: CARD READER INPUT: [FRISBY ET AL., 2012]

28

MUTATION-BASED FUZZERS
FUZZING

EXPLORE DEVIATIONS FROM KNOWN INPUT

Example mutations:

Binary input

– Bit flips

- Byte flips

- Change random bytes

- Insert random byte chunks

- Delete random byte chunks

- Set randomly chosen byte chunks to interesting

values e.g. INT_MAX, INT_MIN, 0, 1, -1, … §

Text input

- Insert random symbols or keywords from a dictionary

29

BLACK-BOX FUZZING
FUZZING

THROW RANDOM INPUT AT THE APPLICATION INTERFACE

30

REPRESENTATIVE TOOL: ZZUF
BLACK-BOX FUZZING

THE “MULTIPURPOSE FUZZER”

zzuf cat /dev/zero | hd -vn 32

zzuf -r 0.05 hd -vn 32 /dev/zero

31

WHITE-BOX FUZZING
FUZZING

THROW RANDOM INPUT AT THE UNIT INTERFACE

32

REPRESENTATIVE TOOL: AFL
FUZZING

AFL (AMERICAN FUZZY LOP)

Maintained by Google

STATE OF THE ART

Generally considered the best, state-of-the-art fuzzer

33

REPRESENTATIVE TOOL: AFL
FUZZING

EXAMPLE COMMAND

“TRADITIONAL FUZZING”

mkdir in_dir

echo “hello” > in_dir/hello

afl-fuzz -n -i in_dir -o out_dir cat

34

REPRESENTATIVE TOOL: AFL
FUZZING

INSTRUMENTATION MODE

1) Compile the program with

coverage probes

2) Attempt to prioritize / mutate

test cases that extend

coverage

afl-clang++ <build command>

35

GENERATION-BASED FUZZING
FUZZING

ATTEMPT TO DISCERN PATTERNS / ALTERNATIVES IN INPUT

Potentially with the help of some guide of guide / input grammar

36

FUZZING ORACLES
FUZZING

BEYOND GRACEFUL FAILURE

In C/C++ there are a lot of violations of proper behavior that are invisible

“Seems fine until it’s a huge problem”

SANITIZERS

UBSan – Undefined behavior sanitizer

ASan – Address sanitizer

TSan – Thread sanitizer

37

RESEARCH DIRECTION: “GUNKING”
FUZZING

FUZZING AS ADVERSARIAL RECON

Fuzzing is so good at finding bugs that even the bad guys do it

PERHAPS A PROGRAM SHOULD DEPLOY ANTI-FUZZING TECH

What would that look like?

38

	Slide 1: Exercise 28
	Slide 2: Testing
	Slide 3: Administrivia and Announcements
	Slide 4: Last Time: Control-Flow Integrity
	Slide 5: Turning the page on this class
	Slide 6: Turning the page on this class
	Slide 7: Lecture Outline
	Slide 8: A formulation of dynamic Analysis
	Slide 9: Test Suites
	Slide 10: Non-determinism
	Slide 11: Testing scope
	Slide 12: Program Visibility
	Slide 13: Lecture Outline
	Slide 14: Classic Limitations of Testing
	Slide 15: “FiXing” Testing
	Slide 16: Test-Driven Development
	Slide 17: Testing vs Static Analysis
	Slide 18: Some difficulties of unit testing
	Slide 19: Lecture Outline
	Slide 20: Fuzzing
	Slide 21: History of Fuzzing
	Slide 22: breaking circular logic
	Slide 23: Graceful Failure
	Slide 24: Exploring unexpected Behavior
	Slide 25: The Simplest Fuzzer
	Slide 26: Prioritizing Input
	Slide 27: Simple Testing Strategy
	Slide 28: Mutation-Based Fuzzers
	Slide 29: Black-Box Fuzzing
	Slide 30: Representative Tool: zzuf
	Slide 31: White-Box Fuzzing
	Slide 32: Representative Tool: AFL
	Slide 33: Representative Tool: AFL
	Slide 34: Representative Tool: AFL
	Slide 35: Generation-Based Fuzzing
	Slide 36: Fuzzing Oracles
	Slide 37: Research Direction: “Gunking”
	Slide 38

