
EXERCISE #10

1

DATAFLOW REVIEW

Perform a value-set dataflow analysis on the following CFG, starting at B1, then B2

then BBL 3, then BBL 4. Give the value sets at the top of each block after 1 round of

analysis

int x = 0;

int y = 2;

g = 1 / y;

y = 0;

if (INPUT){

return;

true

false

BBL2 out: <x: { } , y: { }, g: { }>

BBL2 in: <x: { } , y: { }, g: { }>

BBL4 out: <x: { } , y: { }, g: { }>

BBL4 in: <x: { } , y: { }, g: { }>

BBL3 out: <x: { } , y: { }, g: { }>

BBL3 in: <x: { } , y: { }, g: { }>

BBL1 out: <x: { } , y: { }, g: { }>

BBL1 in: <x: { } , y: { }, g: { }>
B1:

B2:

B3:

B4:

ADMINISTRIVIA
AND
ANNOUNCEMENTS

DATAFLOW FIXPOINTS
EECS 677: Software Security Evaluation

Drew Davidson

CLASS PROGRESS

EXPLORING A FORM OF STATIC ANALYSIS
THAT SUMMARIZES HOW CONTROL AND
DATA FLOWS ACROSS A PROGRAM

- MANIFEST A COMPLETE ANALYSIS BY
DENOTING SETS OF ALL VALUES
MEMORY MIGHT CONTAIN (NB – THIS
WILL END UP BEING CUMBERSOME!)

4

LAST TIME: VALUE SET ANALYSIS
5

REVIEW: DATAFLOW

CONSERVATIVELY TRACK THE POSSIBLE SET OF VALUES TAKEN

1. uint4 x = randInt();

2. uint4 y = x % 2;

3. return x / y;

This approach is a complete over-approximation

LAST TIME: FLOW SENSITIVITY
6

REVIEW: DATAFLOW

ACCOUNT FOR PROGRAM FLOW, NOT PATHS

- When control flow merges, merge the value sets

1. int x = 0;

2. int y = 0;

3. if (g)

4. x = 10;

5. y = 7

6. if (!g)

7. y = 1 / (x – 10);

8. return;

int x = 0;

int y = 0;

if (g)

x = 10;

y = 7;

if (!g)

true
false

B2

B3

y = 1 / (x – 10)

y = 7;

if (!g)

B5

B1

B4

false
true

LOOPS ARE TOUGH TO HANDLE!
7

REVIEW: DATAFLOW ANALYSIS

ISSUES WITH LOOPS

- Generate lots of paths

- Cyclic data dependency

LECTURE OUTLINE

• Handling cyclic

dependency

• Termination

• Handling large value sets

A WORD OF CAUTION
9

DATAFLOW ANALYSIS

WE NEED TO BUILD UP A LOT OF INTERLOCKING MACHINERY FOR A “REAL” FLOW-
SENSITIVE ANALYSIS

- I’ll present a simplified algorithm here with some subtle problems, which we’ll fix

up next time

WHERE TO START ANALYSIS
10

DATAFLOW ANALYSIS

1. uint4 x = 0;

2. uint4 y = 2;

3. uint1 t;

4. while (t=rand()){

5. x = 1 / y;

6. y = 0;

7. }

8. return;

uint4 x = 0;

uint4 y = 2;

x = 1 / y;

y = 0;

}

uint1 t = rand()

while (rand()){

7. return;

true

false
B3

B4

B1

B2

WHERE TO START ANALYSIS
11

DATAFLOW ANALYSIS

1. uint4 x = 0;

2. uint4 y = 2;

3. uint1 t;

4. while (t=rand()){

5. x = 1 / y;

6. y = 0;

7. }

8. return;

x y t

B1 in

B1 out

B2 in

B2 out

B3 in

B3 out

B4 in

B4 out

{1-15} {1-15} {0,1}

{0} {2} {0,1}

??? ??? ???

uint4 x = 0;

uint4 y = 2;

x = 1 / y;

y = 0;

}

uint1 t = rand()

while (rand()){

7. return;

true

false
B3

B4

B1

B2

CHAOTIC ITERATION
12

STATIC ANALYSIS: CONTROL FLOW GRAPHS

Chaotic

Iteration

Surprisingly, not a band with merch at Hot Topic

A WORKLIST ALGORITHM

- Select the next worklist item in any order

- Necessarily assumes progress towards

some goal

DEALING WITH “UNCOMPUTED” SETS

- Assume a reasonable “initial” value

CHAOTIC ITERATION
13

STATIC ANALYSIS: CONTROL FLOW GRAPHS

A WORKLIST ALGORITHM

- Select the next worklist item in any order

- Necessarily assumes progress towards

some goal

DEALING WITH “UNCOMPUTED” SETS

- Assume a reasonable “initial” value

int x = 0;

int y = 0;

if (g)

x = 10;

return x

true

false B2

B3

B1

x y g

B1 in

B1 out

B2 in

B2 out

B3 in

B3 out

- For the sake of complete over-

approximation, let’s assume a set that

hasn’t been computed take could take

on ANY value

CHAOTIC ITERATION: LOOPS
14

DATAFLOW ANALYSIS

1. uint4 x = 0;

2. uint4 y = 2;

3. uint1 t;

4. while (t=rand()){

5. x = 1 / y;

6. y = 0;

7. }

8. return;

uint4 x = 0;

uint4 y = 2;

x = 1 / y;

y = 0;

}

uint1 t = rand()

while (rand()){

7. return;

true

false
B3

B4

B1

B2

x y t

B1 in

B1 out

B2 in

B2 out

B3 in

B3 out

B4 in

B4 out

{1-15} {1-15} {0,1}

{1-15} {1-15} {0,1}

{1-15} {1-15} {0,1}

{1-15} {1-15} {0,1}

LECTURE OUTLINE

• Handling cyclic

dependency

• Termination

• Handling large value sets

WHEN TO STOP ANALYSIS?
16

DATAFLOW ANALYSIS

1. uint4 x = 0;

2. uint4 y = 2;

3. uint1 t;

4. while (t=rand()){

5. x = 1 / y;

6. y = 0;

7. }

8. return;

uint4 x = 0;

uint4 y = 2;

x = 1 / y;

y = 0;

}

uint1 t = rand()

while (rand()){

7. return;

true

false
B3

B4

B1

B2

x y t

B1 in

B1 out

B2 in

B2 out

B3 in

B3 out

B4 in

B4 out

{1-15} {1-15} {0,1}

{0} {2} {0,1}

{0} {2,0} {0,1}

{0,1}

{0} {2,0} {1}

{0} {2,0} {0}

{0} {2,0}

{0} {1}{0}

{0} {2,0} {0}

ANALYSIS PROGRESS
17

STATIC ANALYSIS: CONTROL FLOW GRAPHS

ANALYSIS ENDS WHEN THE FACT SETS REACH
SATURATION

- No additional elements will ever be

added

- It sure would be nice if we could

guarantee that this will happen!

When your fact sets couldn’t

possibly hold any more data

FIXED-POINTS
18

STATIC ANALYSIS: CONTROL FLOW GRAPHS

A FIXED-POINT (AKA FIXPOINT, FIXED POINT)

- A value that does not change under a given transformation

OUR VALUE-SET ANALYSIS WILL HAVE FACTS
THAT REACH A FIXED-POINT

Why?

- Finite set of configurations over INT32s

- Data transforms only add data to fact sets

LECTURE OUTLINE

• Breaking cyclic

dependency

• Termination

• Handling large value sets

WHERE TO STOP THIS ANALYSIS?
20

ANALYSIS TERMINATION

1. int x = 0;

2. int y = 2;

4. x = x + 1;

5. y = 0;

6. }

7. return y / x;

true

false

3. while (INPUT){

WIDENING
21

ANALYSIS TERMINATION

ACCELERATE PROGRESS TOWARDS FIX-POINT

- Lots of (over-approximate) ways to do this

- 1 simple idea: if we hit N values, immediately change the

fact set to “All integers”

1. int x = 0;

2. int y = 2;

4. x = x++;

5. y = 0;

6. }

7. return y / x;

true

false

3. while (INPUT){

LECTURE END!

22

DESCRIBED SOME OF THE ISSUES AND FIXES
FOR DATAFLOW IN THE PRESENCE OF LOOPS

	Slide 1: ExerCise #10
	Slide 2: Administrivia and Announcements
	Slide 3: DataFlow Fixpoints
	Slide 4: Class Progress
	Slide 5: Last Time: Value Set Analysis
	Slide 6: Last Time: Flow Sensitivity
	Slide 7: Loops Are Tough to Handle!
	Slide 8: Lecture Outline
	Slide 9: A word of Caution
	Slide 10: Where to Start Analysis
	Slide 11: Where to start Analysis
	Slide 12: Chaotic Iteration
	Slide 13: Chaotic Iteration
	Slide 14: Chaotic iteration: Loops
	Slide 15: Lecture Outline
	Slide 16: When to stop analysis?
	Slide 17: Analysis Progress
	Slide 18: FixED-Points
	Slide 19: Lecture Outline
	Slide 20: where to StOP THIS Analysis?
	Slide 21: Widening
	Slide 22: Lecture END!

