EXERCISE #10

DATAFLOW REVIEW

Perform a value-set dataflow analysis on the following CFG, starting at B1, then B2
then BBL 3, then BBL 4. Give the value sets at the top of each block after 1 round of

analysis
BBLLin:<x:{},y:{},g:{}>

Bl:|int x = 0;
int y = 2;
l BBL1 out: <x: {},y:{}, g:{}>
B2 :[. BBL2 in: <x:{},y:{},g:{}>
1f (INPUT) ¢ BBL2 out: <x: {},y:{}, g:{}>

true
false| B3:lg =1 / vy; BBL3 in:<x:{},y:{h ag:{}>
y = 07

k/////////// BBL3out: <x: {},y:{}, g:{}>
BBLA in:<x:{},y:{},g:{}>

B4:| return;

BBL4 out: <x: {},y:{}, g:{}>

WARHUps -

5‘1”))M/\"X‘ (r (’ﬂ((

Cowoctieyy afly

¢ Ju,

ADMINISTRIVIA
AND
ANNOUNCEMENTS

\@%"f

DATAFLOW FIXPOINTS

EECS 677: Software Security Evaluation

Drew Davidson

CLASS PROGRESS

EXPLORING A FORM OF STATIC ANALYSIS
THAT SUMMARIZES HOW CONTROL AND
DATA FLOWS ACROSS A PROGRAM

- MANIFEST A COMPLETE ANALYSIS BY
DENOTING SETS OF ALL VALUES
MEMORY MIGHT CONTAIN (NB - THIS
WILL END UP BEING CUMBERSOME!)

LAST TIME: VALUE SET ANALYSIS

REVIEW: DATAFLOW

CONSERVATIVELY TRACK THE POSSIBLE SET OF VALUES TAKEN

_ : ~[f
1. uint4 x = randInt();< Y ZJ s ;
2. uint4y=x%2; @}{! iolljj Xf' Eﬁ"’(\j

3. return x / y;

This approach is a complete over-approximation

LAST TIME: FLOW SENSITIVITY

REVIEW: DATAFLOW

ACCOUNT FOR PROGRAM FLOW, NOT PATHS

- When control flow merges, merge the value sets

J

Y

—
=)
=

O J o O dx W DN

Bl

int x 0;
int y = 0;
1f (9)
t
false rue
B2 = 10;
B3|y = 7;
it (49)
true
false
B4y =1 / (x - 10)
BS5| vy = 7;
it (!'qg)

LOOPS ARE TOUGH TO HANDLE!

REVIEW: DATAFLOW ANALYSIS

ISSUES WITH LOOPS

- Generate lots of paths
- Cyclic data dependency

@

LECTURE OUTLINE ""\
* Handling cyclic /V X
dependency
* Termination <{
* Handling large value sets \
N

N
\y,

A WORD OF CAUTION

DATAFLOW ANALYSIS

WE NEED TO BUILD UP A LOT OF INTERLOCKING MACHINERY FOR A “REAL” FLOW-
SENSITIVE ANALYSIS

- I'll present a simplified algorithm here with some subtle problems, which we’ll fix
up next time

O J o O dx W DN

WHERE TO START ANALYSIS

DATAFLOW ANALYSIS

Bl
uintd x = 0

uint4d y = 2

e e

I
o

_ 5 B2l yintl t—==F=md()

while (rand()) {
=rand ()) { true
/ Vi

B3|x =1/ vy;
y = 0;

false

B4| 7. return;

O 1 o Ul i W DN K

WHERE TO START ANALYSIS

DATAFLOW ANALYSIS

uintd x = 0;
uintd y = 2;

Bl

uintd4d x = 0;
uint4d vy 2;
uintl t; B2
while (t=rand()) {

x =1/ v;

y = 0;
}
return;

11

Bl in

{1-15}

{1-15}

{0,1}

Bl out

{0}

{2}

{0,1}

B2 in

2?7

???

?2?2?

B2 out

B3 in

B3 out

uintl t = rand()
while (rand()) {
true
false B3 I
y = 0;
}
B4| 7. return;

B4 in

B4 out

CHAOTIC ITERATION

STATIC ANALYSIS: CONTROL FLOW GRAPHS

A WORKLIST ALGORITHM

- Select the next worklist item in any order

- Necessarily assumes progress towards
some goal

DEALING WITH “UNCOMPUTED” SETS

- Assume a reasonable “initial” value

Surprisingly, not a band with merch at Hot Topic

12

CHAOTIC ITERATION

STATIC ANALYSIS: CONTROL FLOW GRAPHS

A WORKLIST ALGORITHM

- Select the next worklist item in any order

- Necessarily assumes progress towards
some goal

DEALING WITH “UNCOMPUTED” SETS

- Assume a reasonable “initial” value

- For the sake of complete over-
approximation, let’s assume a set that
hasn’t been computed take could take
on ANY value

Bl

if (9)

int x =
int y =

N\Je

B2

X

10;

false

e

B3| return x

X y g
Bl in (Mj[/*/”ﬂ? }%W*”[y WW‘M
B1 out k
B2 in \
B2 out \
E— \ \ |

B3 out

O 1 o Ul i W DN K

CHAOTIC ITERATION: LOOPS

DATAFLOW ANALYSIS

14

B1 uintd x = 0;
uintd y = 2;
uintd4d x = 0;
uintd y = 2;
uintl t; B2| yint1 t = rand ()
while (t=rand()) { while (=2==y) {
x =1/ v;
_ true
y = 0;
} B3| x =1 /
return false =
}
B4| 7. return;

B1 in {-15} {1-15} {01}
BLout | (4 125 | o)
in MJBZ— {1-15} {0,1}
> p { 0y 4 ¢ 0,
B2 out 8@ j Z\Oyu id;'/
B3in | {0-15) {#-15) Ao |
e | | vapg
in {
> %ﬁ} t5,4 %ff
B4 out

(0,4f

@

LECTURE OUTLINE ""\
* Handling cyclic /V X
dependency
* Termination <{
* Handling large value sets \
N

N
\y,

O 1 o Ul i W DN K

WHEN TO STOP ANALYSIS?

DATAFLOW ANALYSIS

16

B1 uintd x = 0;
uintd y = 2;
uintd4d x = 0;
uintd y = 2;
uintl t; B2| yint1 t = rand ()
while (t=rand()) { while (rand()) {
x =1/ v;
_ true
y = 0;
} B3|x =1 / v;
— y'
return; false =
}
B4| 7. return;

Bl in {1-15} {1-15} {01}
B1 out {0} {2} {0,1}
B2 in {0} {2,0} {0,1}
B2 out {0} {2,0} {0,1}
B3 in {0} {2,0} {1}
B3 out {0} {0} {1}
B4 in {0} {2,0} {0}
B4 out {0} {2,0} {0}

ANALYSIS PROGRESS

STATIC ANALYSIS: CONTROL FLOW GRAPHS

ANALYSIS ENDS WHEN THE FACT SETS REACH
SATURATION

- No additional elements will ever be
added

- It sure would be nice if we could
guarantee that this will happen!

When your fact sets couldn’t
possibly hold any more data

17

FIXED-POINTS

STATIC ANALYSIS: CONTROL FLOW GRAPHS

A FIXED-POINT (AKA FIXPOINT, FIXED POINT)

- A value that does not change under a given transformation

OUR VALUE-SET ANALYSIS WILL HAVE FACTS
THAT REACH A FIXED-POINT

Why?
- Finite set of configurations over INT32s
- Data transforms only add data to fact sets

@

LECTURE OUTLINE ""\
* Breaking cyclic /V &
dependency
* Termination <{
* Handling large value sets \
N

N
\y,

20

WHERE TO STOP THIS ANALYSIS?

ANALYSIS TERMINATION

. 1nt x = 0;
. int vy = 2;

. while (INPUT) {

(v AL
false é §z§;+ 17 X:Ofyw\l%ilﬂ’)gly:f”}‘)‘)sx ’{_0))10151/,
6. }

N0 e L, y;{ﬂ)alw?'/l,%;:/a)

. return y / x;

int x = 0;
int y = 2;

WIDENING

ANALYSIS TERMINATION

ACCELERATE PROGRESS TOWARDS FIiX-POINT

- Lots of (over-approximate) ways to do this

- 1 simple idea: if we hit N values, immediately change the

(x<7)

fact set to “All integers”

true
false 4. x = xt+;
5. v = 0;
6. }

return y / x;

KOO MDY~ Mpx

21

LECTURE END!

DESCRIBED SOME OF THE ISSUES AND FIXES
FOR DATAFLOW IN THE PRESENCE OF LOOPS

}7 Lact o &l(}\}l(/][-l\ UMI”W
olv K5
~ Clughi € ’L" t\?(

&‘> P;/I,L,HW

\/m'la
i"n"")

	Slide 1: ExerCise #10
	Slide 2: Administrivia and Announcements
	Slide 3: DataFlow Fixpoints
	Slide 4: Class Progress
	Slide 5: Last Time: Value Set Analysis
	Slide 6: Last Time: Flow Sensitivity
	Slide 7: Loops Are Tough to Handle!
	Slide 8: Lecture Outline
	Slide 9: A word of Caution
	Slide 10: Where to Start Analysis
	Slide 11: Where to start Analysis
	Slide 12: Chaotic Iteration
	Slide 13: Chaotic Iteration
	Slide 14: Chaotic iteration: Loops
	Slide 15: Lecture Outline
	Slide 16: When to stop analysis?
	Slide 17: Analysis Progress
	Slide 18: FixED-Points
	Slide 19: Lecture Outline
	Slide 20: where to StOP THIS Analysis?
	Slide 21: Widening
	Slide 22: Lecture END!

