
EXERCISE 27

1

DYNAMIC ANALYSIS REVIEW

Write your name and answer the following on a piece of paper

What is the difference between unit testing and application testing?

EXERCISE 27: SOLUTION

2

DYNAMIC ANALYSIS REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Quiz 1 Graded!

ADMINISTRIVIA
AND
ANNOUNCEMENTS

5

QUIZ 1: DATA AND THOUGHTS
ADMINISTRIVIA

QUIZ 1

Perfect ~15%

A (not perfect) ~33%

B ~27%

C ~14%

D ~4%
F ~7%

(40)

(47)

FUZZING
EECS 677: Software Security Evaluation

Drew Davidson

7

PREVIOUSLY: TESTING
REVIEW: DYNAMIC ANALYSIS

Described commands to use PGO for line

coverage analysis

SETUP FOR A CUSTOM LLVM
ANALYSIS

USAGE OF LLVM BUILT-IN
INSTRUMENTATION ANALYSIS

Described the basic infrastructure necessary to

craft a custom instrumentation

8

THIS LESSON: FUZZING
OUTLINE / OVERVIEW

GENERATING GOOD TEST CASES

Cases that exercise unexpected behavior

Cases that increase coverage of program behaviors

PREVIOUS STABS AT THIS TOPIC

The random “fuzz” of white noise

Consider testing as an intrinsic part of the SSDLC

methodology

Test-driven development

Post-hoc evaluation via coverage metrics

TODAY: JUST GUESS

9

HISTORY OF FUZZING
OUTLINE / OVERVIEW

1988: IT WAS A DARK AND STORMY NIGHT

Professor Bart Miller attempts to work from home…

Telnet

Connection

noise

Nonsense

Commands

Program

Crash!Well-formed

Commands

10

BREAKING CIRCULAR LOGIC
OUTLINE / OVERVIEW

AUTOMATED TEST CASE GENERATION RESOLVES A
FUNDAMENTAL CONFLICT IN TESTING…

Tautologically impossible to predict unpredictable

behavior

Apply a technique that obviated the need for

expectations

11

GRACEFUL FAILURE
OUTLINE / OVERVIEW

Any error should be anticipated and handled by the

system, with an informative error message should

recovery become impossible

A KEY PRINCIPLE IN THE VALIDITY OF FUZZING

“The user should never see a seg fault”

12

THE SIMPLEST FUZZER
FUZZ TESTING

THE MOST BASIC FORM OF FUZZING

cat /dev/random | program

A study in the 90s basically did this, finding bugs in…

adb, as, bc, cb, col, diction, emacs, eqn, ftp, indent, lex,

look, m4, make, nroff, plot, prolog, ptx, refer!, spell, style,

tsort, uniq, vgrind, vi

13

AN ACTUAL TOOL!
FUZZ TESTING

THE MOST BASIC FORM OF FUZZING

zzuf

A study in the 90s basically did this, finding bugs in…

adb, as, bc, cb, col, diction, emacs, eqn, ftp, indent, lex,

look, m4, make, nroff, plot, prolog, ptx, refer!, spell, style,

tsort, uniq, vgrind, vi

14

EXPLORING UNEXPECTED BEHAVIOR
FUZZING

RANDOM INPUT IS SURPRISINGLY EFFECTIVE

Numerous bugs found in practice via fuzzing…

Busybox utilities

Windows bugs

Linux Kernel bugs

BENEFITS OF FUZZING

Very easy to run

Instant results

Highly scalable

15

PRIORITIZING INPUT
FUZZING

THE CHALLENGE OF FUZZERS IS (USUALLY) GETTING PAST THE FIRST VALIDATION
CHECK

if (!sane_input()){

 exit 1;

}

//The rest of the program

16

SIMPLE TESTING STRATEGY
FUZZING

CONSIDER “INTERESTING” INPUT

Values close to the maximum, minimum, middle, etc

CASE STUDY: CARD READER INPUT: [FRISBY ET AL., 2012]

17

MUTATION-BASED FUZZERS
FUZZING

EXPLORE DEVIATIONS FROM KNOWN INPUT

Example mutations:

Binary input

– Bit flips

- Byte flips

- Change random bytes

- Insert random byte chunks

- Delete random byte chunks

- Set randomly chosen byte chunks to interesting

values e.g. INT_MAX, INT_MIN, 0, 1, -1, … §

Text input

- Insert random symbols or keywords from a dictionary

18

BLACK-BOX FUZZING
FUZZING

THROW RANDOM INPUT AT THE APPLICATION INTERFACE

19

REPRESENTATIVE TOOL: ZZUF
BLACK-BOX FUZZING

THE “MULTIPURPOSE FUZZER”

zzuf cat /dev/zero | hd -vn 32

zzuf -r 0.05 hd -vn 32 /dev/zero

20

WHITE-BOX FUZZING
FUZZING

THROW RANDOM INPUT AT THE UNIT INTERFACE

21

REPRESENTATIVE TOOL: AFL
FUZZING

AFL (AMERICAN FUZZY LOP)

Maintained by Google

STATE OF THE ART

Generally considered the best, state-of-the-art fuzzer

22

REPRESENTATIVE TOOL: AFL
FUZZING

EXAMPLE COMMAND

“TRADITIONAL FUZZING”

mkdir in_dir

echo “hello” > in_dir/hello

afl-fuzz -n -i in_dir -o out_dir cat

23

REPRESENTATIVE TOOL: AFL
FUZZING

INSTRUMENTATION MODE

1) Compile the program with

coverage probes

2) Attempt to prioritize / mutate

test cases that extend

coverage

afl-clang++ <build command>

24

GENERATION-BASED FUZZING
FUZZING

ATTEMPT TO DISCERN PATTERNS / ALTERNATIVES IN INPUT

Potentially with the help of some guide of guide / input grammar

25

FUZZING ORACLES
FUZZING

BEYOND GRACEFUL FAILURE

In C/C++ there are a lot of violations of proper behavior that are invisible

“Seems fine until it’s a huge problem”

SANITIZERS

UBSan – Undefined behavior sanitizer

ASan – Address sanitizer

TSan – Thread sanitizer

26

RESEARCH DIRECTION: “GUNKING”
FUZZING

FUZZING AS ADVERSARIAL RECON

Fuzzing is so good at finding bugs that even the bad guys do it

PERHAPS A PROGRAM SHOULD DEPLOY ANTI-FUZZING TECH

What would that look like?

WRAP-UP

INTRODUCED THE CONCEPT AND THE
“INDUSTRY STANDARD” TOOL OF FUZZING

27

A simple, elegant idea

	Slide 1: Exercise 27
	Slide 2: Exercise 27: Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Administrivia and Announcements
	Slide 5: Quiz 1: Data and Thoughts
	Slide 6: Fuzzing
	Slide 7: Previously: Testing
	Slide 8: This Lesson: Fuzzing
	Slide 9: History of Fuzzing
	Slide 10: breaking circular logic
	Slide 11: Graceful Failure
	Slide 12: The Simplest Fuzzer
	Slide 13: An actual tool!
	Slide 14: Exploring unexpected Behavior
	Slide 15: Prioritizing Input
	Slide 16: Simple Testing Strategy
	Slide 17: Mutation-Based Fuzzers
	Slide 18: Black-Box Fuzzing
	Slide 19: Representative Tool: zzuf
	Slide 20: White-Box Fuzzing
	Slide 21: Representative Tool: AFL
	Slide 22: Representative Tool: AFL
	Slide 23: Representative Tool: AFL
	Slide 24: Generation-Based Fuzzing
	Slide 25: Fuzzing Oracles
	Slide 26: Research Direction: “Gunking”
	Slide 27: Wrap-up

