
EXERCISE #12

1

ABSTRACT INTERPRETATION REVIEW

• We formalized dataflow analysis by ensuring mathematical properties of our

dataflow fact sets and our dataflow update procedure. What property of the fact sets

and what property of the update function guaranteed termination?

2

FORMALIZING DATAFLOW
REVIEW: ABSTRACT INTERPRETATION

GUARANTEES WE’D LIKE TO EXTRACT FROM OUR ANALYSIS ENGINE

Termination

Completeness (in the analysis sense)

Precision

SUFFICIENT CONDITIONS

Overapproximate, monotonic update functions

A finite-height, complete lattice

3

PRACTICAL CONSIDERATIONS
REVIEW: ABSTRACT INTERPRETATION

GUARANTEES WE’D LIKE TO EXTRACT FROM OUR ANALYSIS ENGINE

Termination

Completeness (in the analysis sense)

Precision

SUFFICIENT CONDITIONS

Overapproximate, monotonic update functions

A finite-height, complete lattice

Problem: lattice may be very tall!

Note: finiteness NOT implied by a complete lattice

4

THE ABSTRACT DOMAIN
REVIEW: ABSTRACT INTERPRETATION

SUFFICIENT CONDITIONS

Overapproximate, monotonic update functions

A finite-height, complete lattice

TRACK “PROPERTIES” OF THE DATA, INSTEAD OF
CONCRETE VALUES

More workable lattice

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Let’s read a paper!

ADMINISTRIVIA
AND
ANNOUNCEMENTS

P2 released

CLASS PROGRESS

WE HAVE A GOOD FORM OF ANALYSIS!

7

Let’s actually apply it

INFORMATION FLOW
EECS 677: Software Security Evaluation

Drew Davidson

LECTURE OUTLINE

• Application Analysis

• Information Flow

• Practical Deployment

10

THE SEMANTIC GAP
INFORMATION FLOW

Semantic gap: “The difference between descriptions of an object by different linguistic representations”

GENERIC DEFINITION

For Computer Science, our focus is on different symbolic / abstract representations

For Computer Science, our objects of interest are programs

11

THE SEMANTIC GAP
INFORMATION FLOW

Semantic gap: “The difference between descriptions of an object by different linguistic representations”

WHAT IS A PROGRAM?

12

THE SEMANTIC GAP
INFORMATION FLOW

Semantic gap: “The difference between descriptions of an object by different linguistic representations”

WHAT IS A PROGRAM?

A miserable little pile of secrets

A sequence of transformations

over memory configurations

A memory region, system calls,

and a set of privileges

- Dracula

- Hardware

- Operating system

13

APPLICATION-LEVEL ANALYSIS
INFORMATION FLOW

FOCUS ON THE BEHAVIOR / SEMANTICS OF THE PROGRAM

Hopefully the right level of granularity for understanding a program’s security

LANGUAGE-BASED SECURITY

Definition - a set of techniques to strengthen

the security of applications by using the properties of

programming languages

“Hey, we’ve got all of these great tools to understand programs

for the sake of correctness / optimization, they’d work for

security too!”

LECTURE OUTLINE

• Application Analysis

• Information Flow

• Practical Deployment

15

RECALL: THE CIA TRIAD
PRACTICAL CONSIDERATIONS

“THE PRIMARY FOCUS OF INFORMATION
SECURITY” - WIKIPEDIA

Confidentiality – The control of access to data

Availability – The degree of

consistent accessibility of data

Integrity – The consistency, accuracy and

trustworthiness

of data over its entire lifecycle

16

RECALL: THE CIA TRIAD
PRACTICAL CONSIDERATIONS

“THE PRIMARY FOCUS OF INFORMATION
SECURITY” - WIKIPEDIA

Confidentiality – The control of access to data

Integrity – The consistency, accuracy and

trustworthiness

of data over its entire lifecycle

Availability – The degree of

consistent accessibility of data

(imperfect) formulations

As dataflow properties

17

RECALL: THE CIA TRIAD
PRACTICAL CONSIDERATIONS

Confidentiality – The control of access to data

Integrity – The consistency, accuracy and

trustworthiness

of data over its entire lifecycle

Availability – The degree of

consistent accessibility of data

(imperfect) formulations

As dataflow properties

Sensitive information in the program

touches an untrusted destination

Untrusted data coming into the program

reaches a sensitive computation

18

TOWARDS FORMALIZING C AND I
INFORMATION FLOW

SIMPLE INFORMATION “CLASSES”
Divide program data and functionality into “high security” and “low security”

Integrity: low security data should not influence high security functionality

Confidentiality: high security data should not influence low security functionality

19

TOWARDS FORMALIZING C AND I
INFORMATION FLOW

SIMPLE INFORMATION “CLASSES”
Divide program data and functionality into “high security” and “low security”

Integrity: low security data should not influence high security functionality

Confidentiality: high security data should not influence low security functionality

string loc = getUserLocation();

if (inKansas(loc)){

 print “Watch out for tornados!”;

}

writeToNetwork(loc);

string netVal = readFromNetwork();

setPassword(“root”, netVal);

20

SOURCES AND SINKS
INFORMATION FLOW

SIMPLE INFORMATION “CLASSES”
Divide program data and functionality into “high security” and “low security”

Integrity: low security data should not influence high security functionality

Confidentiality: high security data should not influence low security functionality

string loc = getUserLocation();

if (inKansas(loc)){

 print “Watch out for tornados!”;

}

writeToNetwork(loc);

string netVal = readFromNetwork();

setPassword(“root”, netVal);

21

SOURCES AND SINKS
INFORMATION FLOW

Integrity: low security data should not influence high security functionality

Confidentiality: high security data should not influence low security functionality

string loc = getUserLocation();

if (inKansas(loc)){

 print “Watch out for tornados!”;

}

writeToNetwork(loc);

string netVal = readFromNetwork();

setPassword(“root”, netVal);

A source operation – an operation that generates data

A sink operation – an operation that consumes data

A flow – a program path segment that begins at a source and ends at a sink

High-security source

Low-security sink

Low-security source

High-security sink

22

FIND THE DATAFLOW!
INFORMATION FLOW

Integrity: low security data should not influence high security functionality

Confidentiality: high security data should not influence low security functionality

string loc = getUserLocation();

if (inKansas(loc)){

 print “Watch out for tornados!”;

}

writeToNetwork(loc);

string netVal = readFromNetwork();

setPassword(“root”, netVal);

A source operation – an operation that generates data

A sink operation – an operation that consumes data

A flow – a program path segment that begins at a source and ends at a sink

High-security source

Low-security sink

Low-security source

High-security sink

23

INFORMATION FLOW

string loc = getUserLocation();

if (inKansas(loc)){

 print “Watch out for tornados!”;

}

writeToNetwork(loc);

High-security source

Low-security sink

FIND THE DATAFLOW!

24

INFORMATION FLOW

string loc = getUserLocation();

if (inKansas(loc)){

 print “Watch out for tornados!”;

}

writeToNetwork(loc);

High-security source

Low-security sink

FIND THE DATAFLOW!

Fact Lattice (confidentiality)

┬

┴

Secret

Public

Loc: Public, inKS: Public

Loc: Secret, inKS: Secret

Loc: Secret, inKS: Secret

Loc: Secret, inKS: Secret

LECTURE OUTLINE

• Application Analysis

• Information Flow

• Practical Deployment

26

SOURCE/SINK IDENTIFICATION
PRACTICAL CONSIDERATIONS

HOW DO WE KNOW WHAT SHOULD BE A SOURCE AND A SINK?

Idea #1 – Programmer annotations

Idea #2 – Build annotations into the system

Idea #3 – something something inferencing handwave

Mind that semantic gap!

27

PROGRAMMER ANNOTATIONS
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

BASIC IDEA

Ask the programmer to say what’s a source and sink

• Auxiliary file of information

• Inline annotations within the program

28

PROGRAMMER ANNOTATIONS
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

THE UTILITY OF PROGRAMMER EFFORT

Analysis Utility

Analyst Effort

A totally-made-up conceptual graph

A frequent struggle in analysis

ISSUES OF HUMAN INTERVENTION

• Incorrect annotations

Ultimately, we’re trying to solve a

limitation of human behavior

• Reactive SSE goes out the window

• Laziness

29

BUILT-IN “ANNOTATIONS”
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

ENRICH THE SYSTEM WITH NOTIONS OF BEHAVIOR

Analysis developer retrofits annotations into the analysis engine

Platform developer bakes capabilities into the system

ISSUES OF SEMANTIC GAP AGAIN

Can be quite hard to predict what becomes security-

relevant

Analysis engine needs to be kept in lockstep with the

system

30

INFERENCING
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

YOU COULD TRY TO AUTOMATICALLY DISCOVER “SOURCELIKE” AND
“SINKLIKE” FUNCTIONS

Maybe we can detect UI asking for credit card?

Machine learning??

Maybe we can write an analysis that looks for even

more fundamental core behavior?

?!

31

CASE STUDY: ANDROID PERMISSIONS
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

MOBILE PHONES SURE COLLECT A LOT OF PRIVATE INFORMATION!

Maybe that information rises to the level of confidentiality?

Maybe this is a good application of an information flow analysis?

32

CASE STUDY: ANDROID PERMISSIONS
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

HYBRID CASE OF BUILT-IN ANNOTATIONS

System has a built-in capability model

Surprisingly hard to map those capabilities to

system functions

MODELGEN

- Do a dynamic analysis of the Android system

to discover capabilities uses

- Manually annotate capabilities as sources or

sinks

- Do a static dataflow analysis of the Android

system to discover capabilities uses

33

GRANULARITY OF ANALYSIS
PRACTICAL CONSIDERATIONS – PRECISION/SANITIZATION

DATA IS COMPLEX!

What happens when a field of a struct is tainted?

What happens when an index of an array is tainted?

34

SANITIZATION
PRACTICAL CONSIDERATIONS – PRECISION/SANITIZATION

WE ALSO WANT TO PROVIDE SOME EXCEPTIONS TO THE FLOW RULES

i.e. tainted data is encrypted

WRAP-UP

NEXT TIME

EVADING ANALYSIS

36

	Slide 1: Exercise #12
	Slide 2: Formalizing Dataflow
	Slide 3: Practical Considerations
	Slide 4: The Abstract Domain
	Slide 5: Administrivia and Announcements
	Slide 6: Administrivia and Announcements
	Slide 7: Class Progress
	Slide 8: Information Flow
	Slide 9: Lecture Outline
	Slide 10: The semantic Gap
	Slide 11: The semantic Gap
	Slide 12: The Semantic Gap
	Slide 13: Application-Level Analysis
	Slide 14: Lecture Outline
	Slide 15: Recall: The CIA Triad
	Slide 16: Recall: The CIA Triad
	Slide 17: Recall: The CIA Triad
	Slide 18: Towards formalizing C and I
	Slide 19: Towards formalizing C and I
	Slide 20: Sources and Sinks
	Slide 21: Sources and sinks
	Slide 22: Find the Dataflow!
	Slide 23: Find the Dataflow!
	Slide 24: Find the Dataflow!
	Slide 25: Lecture Outline
	Slide 26: Source/Sink Identification
	Slide 27: Programmer Annotations
	Slide 28: Programmer Annotations
	Slide 29: Built-In “Annotations”
	Slide 30: Inferencing
	Slide 31: Case Study: Android Permissions
	Slide 32: Case Study: Android Permissions
	Slide 33: Granularity of analysis
	Slide 34: Sanitization
	Slide 35: Wrap-up
	Slide 36: Next Time

