EXERCISE #12

ABSTRACT INTERPRETATION REVIEW

« We formalized dataflow analysis by ensuring mathematical properties of our
dataflow fact sets and our dataflow update procedure. What property of the fact sets
and what property of the update function guaranteed termination?

FORMALIZING DATAFLOW

REVIEW: ABSTRACT INTERPRETATION

GUARANTEES WE’D LIKE TO EXTRACT FROM OUR ANALYSIS ENGINE
Termination
Completeness (in the analysis sense)

Precision

SUFFICIENT CONDITIONS

Overapproximate, monotonic update functions

A finite-height, complete lattice

PRACTICAL CONSIDERATIONS

REVIEW: ABSTRACT INTERPRETATION

GUARANTEES WE’D LIKE TO EXTRACT FROM OUR ANALYSIS ENGINE
Termination
Completeness (in the analysis sense)

Precision Problem: lattice may be very tall!

SUFFICIENT CONDITIONS

Overapproximate, monotonic update functions

Alfinite-height], complete lattice

THE ABSTRACT DOMAIN

REVIEW: ABSTRACT INTERPRETATION

SUFFICIENT CONDITIONS

Overapproximate, monotonic update functions

A finite-height, complete lattice

TRACK “PROPERTIES” OF THE DATA, INSTEAD OF
CONCRETE VALUES

More workable lattice

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Let’s read a paper!

Operating R.S. Gaines
Systems Editor

Certification of
Programs for Secure
Information Flow

Dorothy E. Denning and Peter J. Denning
Purdue University

This paper presents a certification mechanism for
verifying the secure flow of information through a pro-
gram. Because it exploits the properties of a lattice
structure among security classes, the procedure is suf-
ficiently simple that it can easily be included in the
analysis phase of most existing compilers. Appropriate
semantics are presented and proved correct. An impor-
tant application is the confinement problem: The
mechanism can prove that a program cannot cause

dl fidential results to depend on confi-

rr -
dential input data.
Key Words and Phrases: protection, security, infor-
mation flow, program certification, lattice, confine-
ment, security classes
CR Categories: 4.3, 4.35, 5.24

Copyright & 1977, Association for Computing Machinery, Ing,
General permission 1o republish, but not for profit. all or part of
this material is granted provided that ACM’s copyright notice is
given and that reference is made 1w the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

Work reported herein was supported in part by the Nagional
ence Foundation under grants GJ-43176 and GJ-41289 and by
I1BM uwnder a fellowship. Authors® present address: Computer Sci-
ence Department, Purdue University, West Lafayette, IN 47907,

S04

1. Introduction

Computer system security relies in part on informa-
tion flow control, that is, on methods of regulating the
dissemination of information among objects through-
out the system. An information flow policy specifies a
set of security classes for information, a flow relation
defining permissible flows among these classes, and a
method of binding each storage object to some class.
An operation, or series of operations, that uses the
value of some object, say x, to derive a value for
another, say y, causes a flow from x to y. This flow is
admissible in the given flow policy only if the security
class of x flows into the security class of y.

Prior work on the enforcement of flow policies has
concentrated on run-time mechanisms. One type of
mechanism enforces a given flow policy by controlling
processes’ read and write access rights to objects: no
process may acquire read access for an input object, or
write access for an output object, unless the security
class of every input flows into the security class of every
output —even if some outputs depend on only a subset
of the inputs. ADEPT-50 [30], the Case system [29],
the MITRE system [3, 23], and the Privacy Restriction
Processor [26] are of this type. These mechanisms are
generally easy to implement because they make no
attempt to examine the structure of a program. A
second type of (more complex) mechanism accounts for
program structures in order to determine flows be-
tween specific input and output objects. Fenton's data
mark machine {10], the mechanism of Gat and Saal
[13], and the surveillance mechanism of Jones and
Lipton [19] are of this type. The surveillance mecha-
nism emplays a program transformation to insure that
all flows are properly accounted for at run time. A
detailed discussion of all these mechanisms can be
found in [7].

This paper presents a compile-time mechanism that
certifies a program only if it specifies no flows in viola-
tion of the flow policy. Besides the aesthetic attraction
of establishing a program’s security before it executes,
a certification mechanism has important advantages. It
can be specified directly in terms of language struc-
tures, which facilitates its comprehension and its proof
of correctness. [t greatly reduces the need for run-time
checking. It does not impair a program’s execution
speed. (See also [23]).

Prior certification does not completely eliminate the
need for run-time checking. Run-time support is
needed to raise the tolerance against hardware mal-
functions and other threats to the integrity of certified

Communications July 1577
of Volume 20
the ACM Number 7

P2 released

ADMINISTRIVIA
AND
ANNOUNCEMENTS

CLASS PROGRESS

WE HAVE A GOOD FORM OF ANALYSIS!
Let’s actually apply it

\@%"f

INFORMATION FLOW

EECS 677: Software Security Evaluation

Drew Davidson

@

e
LECTURE OUTLINE (4
* Application Analysis ‘
e Information Flow ‘
* Practical Deployment \
i

N
\y,

THE SEMANTIC GAP

INFORMATION FLOW

For Computer Science, our objects of interest are programs

GENERIC DEFINITION

Semantic gap: “The difference between descriptions of an objgettyw different linguistic representations”

For Computer Science, our focus is on different symbolic /

dbstract representations

10

THE SEMANTIC GAP

INFORMATION FLOW

Semantic gap: “The difference between descriptions of an object by different linguistic representations”

WHAT IS A PROGRAM?

T 1=* =] RICHTER
: D= 1.

11

THE SEMANTIC GAP

INFORMATION FLOW

Semantic gap: “The difference between descriptions of an object by different linguistic representations”

WHAT IS A PROGRAM?

A miserable little pile of secrets

- Dracula

A sequence of transformations
over memory configurations

- Hardware

A memory region, system calls,
and a set of privileges

- Operating system

APPLICATION-LEVEL ANALYSIS

INFORMATION FLOW

FOCUS ON THE BEHAVIOR / SEMANTICS OF THE PROGRAM

Hopefully the right level of granularity for understanding a program’s security

LANGUAGE-BASED SECURITY

Definition - a set of techniques to strengthen
the security of applications by using the properties of
programming languages

“Hey, we’ve got all of these great tools to understand programs
for the sake of correctness / optimization, they’d work for
security too!”

@

e
LECTURE OUTLINE (4
* Application Analysis ‘
e Information Flow ‘
* Practical Deployment \
i

N
\y,

RECALL: THE CIA TRIAD

CONFIDENTIALITY

PRACTICAL CONSIDERATIONS

“THE PRIMARY FOCUS OF INFORMATION
SECURITY” - WIKIPEDIA

Confidentiality — The control of access to data

Integrity — The consistency, accuracy and
trustworthiness
of data over its entire lifecycle

Availability — The degree of
consistent accessibility of data

15

RECALL: THE CIA TRIAD

PRACTICAL CONSIDERATIONS

(imperfect) formulations __

As dataflow properties

“THE PRIMARY FOCUS OF INFORMATION
SECURITY” - WIKIPEDIA

— Confidentiality — The control of access to data

Integrity — The consistency, accuracy and
trustworthiness

__ of data over its entire lifecycle

Availability — The degree of
consistent accessibility of data

16

(imperfect) formulations __

As dataflow properties

RECALL: THE CIA TRIAD

PRACTICAL CONSIDERATIONS

Sensitive information in the program
touches an untrusted destination

— Confidentiality — The control of access to data

Integrity — The consistency, accuracy and
trustworthiness

__ of data over its entire lifecycle

Availability — The degree of
consistent accessibility of data Untrusted data coming into the program
reaches a sensitive computation

17

TOWARDS FORMALIZING C AND |

INFORMATION FLOW

SIMPLE INFORMATION “CLASSES”
Divide program data and functionality into “high security” and “low security”

Confidentiality: high security data should not influence low security functionality

Integrity: low security data should not influence high security functionality

TOWARDS FORMALIZING C AND |

INFORMATION FLOW

SIMPLE INFORMATION “CLASSES”
Divide program data and functionality into “high security” and “low security”

Confidentiality: high security data should not influence low security functionality

string loc = getUserLocation();
1f (inKansas (loc)) {
print “Watch out for tornados!”;

}

writeToNetwork (loc) ;

Integrity: low security data should not influence high security functionality

string netVal = readFromNetwork () ;
setPassword (“root”, netVal);

SOURCES AND SINKS

INFORMATION FLOW

SIMPLE INFORMATION “CLASSES”
Divide program data and functionality into “high security” and “low security”

Confidentiality: high security data should not influence low security functionality

string loc = getUserLocation();
1f (inKansas (loc)) {
print “Watch out for tornados!”;

}

writeToNetwork (loc) ;

Integrity: low security data should not influence high security functionality

string netVal = readFromNetwork () ;
setPassword (“root”, netVal);

SOURCES AND SINKS

INFORMATION FLOW

A source operation — an operation that generates data
A sink operation — an operation that consumes data
A flow — a program path segment that begins at a source and ends at a sink

Confidentiality: high security data should not influence low security functionality

string loc =| getUserLocation ()};
1f (inKansas (loc)) {
print “Watch out for tornados!”;

}

writeToNetwork (loc) ;

Integrity: low security data should not influence high security functionality

string netVal =|readFromNetwork ()
setPassword (“root”, [netVal)) ;

FIND THE DATAFLOW!

INFORMATION FLOW

A source operation — an operation that generates data
A sink operation — an operation that consumes data
A flow — a program path segment that begins at a source and ends at a sink

Confidentiality: high security data should not influence low security functionality

string loc =| getUserLocation ()};
1f (inKansas (loc)) {
print “Watch out for tornados!”;

}

writeToNetwork (loc) ;

Integrity: low security data should not influence high security functionality

string netVal =|readFromNetwork ()
setPassword (“root”, [netVal)) ;

FIND THE DATAFLOW!

string loc =| getUserLocation ()};
1if (inKansas (loc)) {

print “Watch out for tornados!”;

}

writeToNetwork (loc) ;

= call ptr (...)
= call i32 (ptr
br il , Llabel ; Llabel

body:

= call i32 (ptr, ... (ptr
br label
exit:
call void
ret 132 0

INFORMATION FLOW

FIND THE DATAFLOW!

INFORMATION FLOW

Fact Lattice (confidentiality)

string loc = getUserLocation ()/;
1if (inKansas (loc)) { Secret
print “Watch out for tornados!”;
}
writeToNetwork (loc) ;
Public

Loc: Public, inKS: Public

= call ptr (...)
= call i32 (ptr

br il label label :
r i , LaDe o0 Loc: Secret, InKS: Secret

Loc: Secret, inKS: Secret body :

= call i32 (ptr, ...
br Llabel

Loc: Secret, inKS: Secret

exit:
call void
ret i32 0

@

e
LECTURE OUTLINE (4
* Application Analysis ‘
e Information Flow ‘
* Practical Deployment \
i

N
\y,

SOURCE/SINK IDENTIFICATION

PRACTICAL CONSIDERATIONS

How DO WE KNOW WHAT SHOULD BE A SOURCE AND A SINK?
Mind that semantic gap!

ldea #1 — Programmer annotations

Idea #2 — Build annotations into the system

ldea #3 — something something inferencing handwave

26

PROGRAMMER ANNOTATIONS

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

BASIC IDEA

Ask the programmer to say what’s a source and sink
* Auxiliary file of information
* Inline annotations within the program

- anction Attrs: noinline nounwind optnone uwtable ; Function Attrs: inﬁ:_sink
define 132 @function2(i8* %arg) #1 {

dso_local i32 @target() #0 {

alloca i32, align 4

alloca i32, align 4

alloca i32*%, align 8

alloca i32*%, align 8

= call i32 @functionl (i8* %strptr)
store 132* %1, i32** %3, align 8 . . . =
%5 = load 132, 132* %1, align 4 ; Function Attrs: info_source

% = add nsw i32 %5, 1 define 132 @functionl() #3 {
%7 = sext 132 %6 to i64

inttoptr i64 %7 to i32*

= call i32 @function2 (i32 %res)

store 132* %8, 132** %4, align 8

ret 132 @

PROGRAMMER ANNOTATIONS

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

THE UTILITY OF PROGRAMMER EFFORT

A frequent struggle in analysis

ISSUES OF HUMAN INTERVENTION

Ultimately, we're trying to solve a Analysis Utility
limitation of human behavior

* |ncorrect annotations

e Laziness
« Reactive SSE goes out the window

Analyst Effort

A totally-made-up conceptual graph

28

BUILT-IN “ANNOTATIONS”

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

ENRICH THE SYSTEM WITH NOTIONS OF BEHAVIOR

Platform developer bakes capabilities into the system

Analysis developer retrofits annotations into the analysis engine

ISSUES OF SEMANTIC GAP AGAIN
Can be quite hard to predict what becomes security-
relevant

Analysis engine needs to be kept in lockstep with the
system

29

INFERENCING

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

YOU COULD TRY TO AUTOMATICALLY DISCOVER “SOURCELIKE” AND
“SINKLIKE” FUNCTIONS

Maybe we can detect Ul asking for credit card?

Maybe we can write an analysis that looks for even
more fundamental core behavior?

Machine |earning??’?l’?l’?I’?I’)I’?I’?I’?I’?I’)I’?I’?I’)I’)I’)I’?I’?I’)I’)I’)I

30

CASE STUDY: ANDROID PERMISSIONS

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

MOBILE PHONES SURE COLLECT A LOT OF PRIVATE INFORMATION!

Maybe that information rises to the level of confidentiality?

Maybe this is a good application of an information flow analysis?

31

CASE STUDY: ANDROID PERMISSIONS

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

HYBRID CASE OF BUILT-IN ANNOTATIONS

System has a built-in capability model

Surprisingly hard to map those capabilities to
system functions

MODELGEN

Manually annotate capabilities as sources or
sinks

Do a dynamic analysis of the Android system
to discover capabilities uses

Do a static dataflow analysis of the Android
system to discover capabilities uses

Modelgen: Mining Explicit
Information Flow Specifications
from Concrete Executions

Lazaro Clapp Saswat Anand Alex Aiken
Stanford University, USA Stanford University, USA Stanford University, USA
lazaro@stanford.edu saswat@cs.stanfordedu aiken@cs.stanford.edu

ABSTRACT

We present a technigue to mine explic
specifications from con executions.
wan be consumed by a skalic lainl analysis, enabl
analysis to work even when method definitions are missing
or portions of the program are too difficult to analyze stat-
ically (e.g., due to dynamic features such as reflection). We
present, an wentation of our technigue for the Androbd
platform. When compared to a sct of mannally written spec-
ifications for 309 methods scross 51 classes, our technigue
is able to recover M.36% of these mannal specifications and
L ou

information How

produces many more correct annolations anual
models missed, We incorporate the generated specifications
into an existing static taint analysis system, and show that
they enable it to find additional true flows. Although our
implementation is Android-specilic, our h is appli-
cable Lo other application frameworks.

Categories and Subject Deseriptors

F.3.2 [Semantics of Programming Languages|: Pro-
wram analysis; 1.2.5 [Software Engineering]: Testing and
Dicbuging— Trucing

General Terms
Experimentation, Algorithms, Verification

Keywords

Dynamic analysi ification mining; infi ion flow

1. INTRODUCTION
Secaling a]'n« it an.d aound atatic analysis to real-world

For + wrillen in

sollware is
modern objecl-oriented languages such as Java, Typhadly
such software builds upon large and complex frameworks
ez, Android, Apache Struts, and Spring). For soundness
and precision, any analysis of such software entails analysis

Formissive 1 make digital oo Tand copics of all or s af this work for persansl or
classroom use is granied without fee provided that copies are nol made or distribated
for prafit or commercial advaniage and thal copies bear this notce and the fill ciiation
o the: lirst g Coogrysights for components of this work ownead by athers thean ACM
st e bonaned. Abstracting with covdil is permitied. To copy otherwise, or ropablish,
o post on servers of o redistribule bo lists, requires prior specific permission andfor 2
M Request permissans Do Permisionsac. o,

Capyright is held by the ownesfauthoris). Publication rights licensed o ACM.
ISSTA'13, July 1317, 2015, Baltimors, MDY, USA

AC

M. 978 1-4503-3620-8/1 587
ity fidx doi.org/ 10,1 1457277 1783.2771810

ol the [r: ark. Flowever, Uhere are at least four problems
Lhat midk anialysiis of friunework code chadlengi Firs,
a very procise analysis of a framework may not scale becanse
most frameworks are very large. Second, framework code
may nse dynamic language features, such as reflection in
Java, which are dilieult to analyse statically. Third, frame
works Lypically s

on-code artifacts (g, configuration
files) that hawe special scmantics thet must be modeled for
accurate results. Fourth, frameworks usually build on ab-
atractions written in lower- langnages for which a com-
prehensive static analysis may be w x5
nalive mebhods). Such foreign Tunclions appear as m
code to the static analysis of the higher-level language

Omne approach to address these problems is to use specifi-
cations (akso called models) for framework classes and meth-
onds. From a high-level
the framework code on the progrun state Uhal are relevant bo
the analysis. The anslysis can then use these specifications
instead of analyzing the framework. Uu. of specifications

can improve ly be

ailalile (o,

specification reflects those effects of

il than Ll code
they specify. In addition lo scalability, use of specifications
can also improve the precision of the anslysis becanse speci-
fications are also simpler (e.g., no dynamic language features
cole: artifacts) Lh i code
Although use of speci s can irnprove bolh sealabil
ity and precision of an analysis, obtaining specifications is a
challenging problem in itself. If specifications are computed
by static Lysis of the @ k code, the aforementioned
problems w An allernative approach is o manoally
wrile: spesifications. This approsch is nol impractics] be
canse once the specifications for a framework arc written,
those specifications can be used to analyze any picce of soft-
ware that wses that framework. However, writing and main-
cifications mannally for a lage framework is sill
1-,Ibur|ul.|$ and suscoplible o human error, Dynawmic anal
ysis, which obscrves concrete cxecutions of & program and
meneralizes to produce specifications, represents an atirme-
tive third alternative. Mining specifications from execution
conswmed by a static analysis, is nol a novel

ar T

traces, 1o be
iden, For example, some lechnigees produce control-low
specifications (e.g., |2, 50, 34, 20, 36]), while others discover
general pre- and post-conditions on metheds (e.g., Daikon
[l"]) Unmowr we are interested in mung information-fow
gpecifications 1 through d ysis a6 mod
els Lo be consumed by a stalic analysis. This s o problem

that, to our knowledge, has not been previously explored.

32

GRANULARITY OF ANALYSIS

PRACTICAL CONSIDERATIONS - PRECISION/SANITIZATION

DATA IS COMPLEX!

What happens when a field of a struct is tainted?

What happens when an index of an array is tainted?

33

SANITIZATION

PRACTICAL CONSIDERATIONS - PRECISION/SANITIZATION

WE ALSO WANT TO PROVIDE SOME EXCEPTIONS TO THE FLOW RULES

l.e. tainted data is encrypted

34

EEEEEEEE

AAAAAAAAAAAAAAA

	Slide 1: Exercise #12
	Slide 2: Formalizing Dataflow
	Slide 3: Practical Considerations
	Slide 4: The Abstract Domain
	Slide 5: Administrivia and Announcements
	Slide 6: Administrivia and Announcements
	Slide 7: Class Progress
	Slide 8: Information Flow
	Slide 9: Lecture Outline
	Slide 10: The semantic Gap
	Slide 11: The semantic Gap
	Slide 12: The Semantic Gap
	Slide 13: Application-Level Analysis
	Slide 14: Lecture Outline
	Slide 15: Recall: The CIA Triad
	Slide 16: Recall: The CIA Triad
	Slide 17: Recall: The CIA Triad
	Slide 18: Towards formalizing C and I
	Slide 19: Towards formalizing C and I
	Slide 20: Sources and Sinks
	Slide 21: Sources and sinks
	Slide 22: Find the Dataflow!
	Slide 23: Find the Dataflow!
	Slide 24: Find the Dataflow!
	Slide 25: Lecture Outline
	Slide 26: Source/Sink Identification
	Slide 27: Programmer Annotations
	Slide 28: Programmer Annotations
	Slide 29: Built-In “Annotations”
	Slide 30: Inferencing
	Slide 31: Case Study: Android Permissions
	Slide 32: Case Study: Android Permissions
	Slide 33: Granularity of analysis
	Slide 34: Sanitization
	Slide 35: Wrap-up
	Slide 36: Next Time

