
EXERCISE 17

1

PROGRAM SLICING REVIEW

Write your name and answer the following on a piece of paper

Draw the forward slice from line 2 in following program:

EXERCISE 17: SOLUTION

2

PROGRAM SLICING REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

4

LAST TIME: THE PROGRAM SLICE
REVIEW: PROGRAM SLICING

EXTRACT A SUB-PROGRAM OF INTEREST
BASED ON ONE (OR MORE) STATEMENTS

Forward slice

Capture all code influenced by a given statement

Backwards slide

Capture all code influencing a given statement

5

CONSTRUCTING THE SLICE
REVIEW: PROGRAM SLICING

Extract the Control-Flow Graph (CFG)

Construct Basic Blocks, make control transfers

edges

Extract the Postdominator Tree from the CFG

(done via a dataflow analysis)

Capture the IFDOM relationship

Backwards edges in the postdominator tree

Build the Control-Dependence Graph (CDG)

Backwards edges in the postdominator tree

Build the Data-Dependence Graph (DDG)

Backwards edges in the reaching definitions

Build the Control-Dependence Graph (PDG)

Add all edges from the DDG to the CDG

Construct the transitive closure of PDG edges

Forward: against dependence, Backwards: with

dependence

6

USES FOR PROGRAM SLICES
REVIEW: PROGRAM SLICING

Program Comprehension

What is this statement doing?

Debugging

(done via a dataflow analysis)

Scaling heavyweight analysis

Less program to test

VIBE CHECK

DATAFLOW ANALYSIS IS SUPER USEFUL!

7

We did leave out a handful of program features…

• Functions

• Global Variables

• Classes / Dynamic Dispatch

• Pointers / References

We’ve achieved a milestone in our analysis

8

IS THIS STUFF USEFUL?
VIBE CHECK

EMPIRICALLY, YES

Windows PREfast and Static Driver Verifier

Coverity

PREfast for Drivers: only analyzes a single function

Official bug numbers are hard to come by, but

anecdotally they have been crucial in reducing

Windows DOS

Even shipped with some versions of Visual Studio

Static analysis tool originally from Stanford

9

IS THIS STUFF USEFUL?
VIBE CHECK

EMPIRICALLY, YES

Under a United States Department of Homeland Security

contract in 2006, the tool was used to examine over 150

open source applications for bugs; 6000 bugs found by the

scan were fixed across 53 projects.[4]

National Highway Traffic Safety Administration used the

tool in its 2010-2011 investigation into reports of sudden

unintended acceleration in Toyota vehicles.[5][6] The tool was

used by CERN on the software employed in the Large

Hadron Collider[7][8] and in the NASA Jet Propulsion

Laboratory during the flight software development of the

Mars rover Curiosity.[9]

- Wikipedia

Windows PREfast and Static Driver Verifier

Coverity

PREfast for Drivers: only analyzes a single function

Static analysis tool originally from Stanford

Official bug numbers are hard to come by, but

anecdotally they have been crucial in reducing

Windows DOS

Even shipped with some versions of Visual Studio

https://en.wikipedia.org/wiki/United_States_Department_of_Homeland_Security
https://en.wikipedia.org/wiki/Coverity#cite_note-4
https://en.wikipedia.org/wiki/National_Highway_Traffic_Safety_Administration
https://en.wikipedia.org/wiki/Sudden_unintended_acceleration
https://en.wikipedia.org/wiki/Sudden_unintended_acceleration
https://en.wikipedia.org/wiki/Coverity#cite_note-5
https://en.wikipedia.org/wiki/Coverity#cite_note-6
https://en.wikipedia.org/wiki/CERN
https://en.wikipedia.org/wiki/Large_Hadron_Collider
https://en.wikipedia.org/wiki/Large_Hadron_Collider
https://en.wikipedia.org/wiki/Coverity#cite_note-7
https://en.wikipedia.org/wiki/Coverity#cite_note-8
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/Jet_Propulsion_Laboratory
https://en.wikipedia.org/wiki/Jet_Propulsion_Laboratory
https://en.wikipedia.org/wiki/Curiosity_rover
https://en.wikipedia.org/wiki/Coverity#cite_note-9

INTERPROCEDURAL
ANALYSIS
EECS 677: Software Security Evaluation

Drew Davidson

11

SCALING UP OUR ANALYSIS
INTERPROCEDURAL ANALYSIS

INTRAPROCEDURAL ANALYSIS IS USEFUL!
PREfast Driver shows the importance in special

cases

Coverity shows the importance in more general

cases

INTERPROCEDURAL ANALYSIS IS USEFUL!

LECTURE OUTLINE

• Abject Pessimism

• ICFGs

• Context-Sensitivity

• Summary Functions

13

WORST-CASE ASSUMPTIONS
NAÏVE APPROACH

CREATE SIMPLE, “SAFE”
OVER-APPROXIMATION

What constitutes “being safe”

depends on your analysis

– Example 1, confidentiality: Assume

a function call tags all reachable

data as confidential

– Example 2, integrity: Assume a

function call tags all reachable

data as untrusted

Function

call

Static

analysis

14

WORST-CASE ASSUMPTIONS
NAÏVE APPROACH

OUR GENERAL PHILOSOPHY:
“DO NO HARM” GUARANTEES

Recall our notions of soundness and completeness:

- Sound: no false positives (“tells no lie”)

- Complete: no false negatives (“omits no truth”)

ANYTHING THAT CAN GO WRONG
WILL GO WRONG

- MURPHY’S LAW

bug hunting:

 - Report buggy programs

 - Safe means complete analysis

program verification:

 - Report clean programs

 - Safe means sound analysis

“BEING SAFE” REQUIRES
FORMULATING ANALYSIS GOAL

15

TIGHTENING THE BOUNDS
NAÏVE APPROACH

ATTEMPT TO GET TIGHTER AND TIGHTER
BOUNDS RETAINING COMPLETENESS

Address areas of imprecision that are only adding

false positives.

Truth

Approximation 1

Approximation 2

Approximation 3

LECTURE OUTLINE

• Abject Pessimism

• ICFGs

• Context-Sensitivity

• Summary Functions

17

THE OBVIOUS INTERPROCEDURAL SOLUTION
INTERPROCEDURAL ANALYSIS: ICFGS

JUST ADD EDGES FROM A CALL SITE TO THE CALLEE

Builds the interprocedural control flow graph (ICFG) aka “supergraph”

18

THE OBVIOUS INTERPROCEDURAL SOLUTION
INTERPROCEDURAL ANALYSIS: ICFGS

JUST ADD EDGES FROM A CALL SITE TO THE CALLEE

Builds the interprocedural control flow graph (ICFG) aka “supergraph”

int main(){

 int a = foo();

int b = a;

return a / b

int foo(){

 return 4;

19

COST/BENEFIT OF SUPERGRAPHS
INTERPROCEDURAL ANALYSIS: ICFGS

COSTS OF ICFGS

May not be obvious what the callee is

Naïvely leads to some erroneous paths

BENEFITS OF ICFGS

Better than abject pessimism!

Minimal modification to intraprocedural algorithms

20

COST/BENEFIT OF SUPERGRAPHS
INTERPROCEDURAL ANALYSIS: ICFGS

COSTS OF ICFGS

May not be obvious what the callee is

We can separate that concern into a call graph analysis

21

CALL GRAPHS
INTERPROCEDURAL ANALYSIS: ICFGS

COSTS OF ICFGS

May not be obvious what the callee is

We can separate that concern into a call graph analysis

Simple call graph:

connect caller functions to callee functions

- Node: function

- Edge: function call

foo

bar

baz

main

22

CALL GRAPHS
INTERPROCEDURAL ANALYSIS: ICFGS

COSTS OF ICFGS

May not be obvious what the callee is

Simple call graph:

connect caller functions to callee functions

- Node: function

- Edge: function call

foo

bar

baz

main

8

Better
Call sites

with nested call sites

10

12

2

3

We can separate that concern into a call graph analysis

23

CALL GRAPHS
INTERPROCEDURAL ANALYSIS: ICFGS

COSTS OF ICFGS

May not be obvious what the callee is

We can separate that concern into a call graph analysis

In the case of imprecision, over-approximate behaviors

24

THE OTHER THING ABOUT SUPERGRAPHS
INTERPROCEDURAL ANALYSIS: ICFGS

COSTS OF ICFGS

May not be obvious what the callee is

We can separate that concern into a call graph analysis

In the case of imprecision, over-approximate behaviors

25

THE OTHER THING ABOUT SUPERGRAPHS
INTERPROCEDURAL ANALYSIS: ICFGS

COSTS OF ICFGS

May not be obvious what the callee is

We can separate that concern into a call graph analysis

In the case of imprecision, over-approximate behaviors

Naïvely leads to some impossible paths

int main(){

 g = -1;

 inc();

inc();

return 2 / g;

void inc(){

 g++;

26

THE OTHER THING ABOUT SUPERGRAPHS
INTERPROCEDURAL ANALYSIS: ICFGS

COSTS OF ICFGS

May not be obvious what the callee is

We can separate that concern into a call graph analysis

In the case of imprecision, over-approximate behaviors

Naïvely leads to some impossible paths

int main(){

 g = -1;

 inc();

inc();

return 2 / g;

void inc(){

 g++;

LECTURE OUTLINE

• Abject Pessimism

• ICFGs

• Context-Sensitivity

• Summary Functions

28

(CALLING) CONTEXT SENSITIVITY
INTERPROCEDURAL ANALYSIS: ICFGS

THE PROBLEM IN THE SIMPLE SUPERGRAPH ANALYSIS

A lock of calling context (return to the wrong call site)

int main(){

 g = -1;

 inc();

inc();

return 2 / g;

void inc(){

 g++;

This provides another way to “tune” a flow analysis

- Flow-sensitive vs Flow-insensitive

- Context-sensitive vs Context-insensitive

tracks some

amount of

context

29

CALL STRINGS AND K-CFA
INTERPROCEDURAL ANALYSIS: ICFGS

HOW MUCH CONTEXT TO KEEP?

Obvious solution: Call strings

Obvious problem: what about the caller’s caller?

Obvious solution: keep track of the caller’s caller?

Obvious problem: can’t distinguish between callers (context-insensitive analysis)

1-CFA

2-CFA

Keep track of the caller

“k-CFA popularized the idea of context-sensitive flow analysis.

[…] in the OO setting, where a 1- and 2-CFA analysis is

considered heavy but certainly possible”

- Might et al, Resolving and Exploiting the k-CFA Paradox

30

ANOTHER FORM OF CONTEXT SENSITIVITY
INTERPROCEDURAL ANALYSIS: CONTEXT-SENSITIVITY

A (PERHAPS) MORE CONCEPTUALLY STRAIGHTFORWARD APPROACH…

Rather than complicating the edges, what if we cloned the nodes

int main(){

 g = -1;

 inc();

inc();

return 2 / g;

void inc(){

 g++;

void inc(){

 g++;

31

ANOTHER FORM OF CONTEXT SENSITIVITY
INTERPROCEDURAL ANALYSIS: CONTEXT-SENSITIVITY

A (PERHAPS) MORE CONCEPTUALLY STRAIGHTFORWARD APPROACH…

Rather than complicating the edges, what if we cloned the nodes

int main(){

 g = -1;

 inc();

inc();

return 2 / g;

void inc(){

 g++;

void inc(){

 g++;

“Exploded supergraph”: 1 clone per static call site

Still very much not foolproof

LECTURE OUTLINE

• Abject Pessimism

• ICFGs

• Context-Sensitivity

• Summary Functions

33

BIG IDEA

SUMMARY FUNCTIONS
SUPERGRAPHS

Summarize callee analysis (rather than

include it in the analysis)

AUTOMATIC MANIFESTATION

Create a lightweight inference

- What variables are (transitively) modified as a

result of a function call? GMOD

- What variables are (transitively) referenced as a

result of a function call? GREF

MANUAL MANIFESTATION
Ask the user to provide information

WRAP-UP

	Slide 1: Exercise 17
	Slide 2: Exercise 17: Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Last Time: The Program Slice
	Slide 5: Constructing the Slice
	Slide 6: Uses for Program Slices
	Slide 7: VIBE CHeck
	Slide 8: Is this stuff Useful?
	Slide 9: Is this stuff Useful?
	Slide 10: Interprocedural Analysis
	Slide 11: Scaling up our analysis
	Slide 12: Lecture Outline
	Slide 13: worst-Case Assumptions
	Slide 14: Worst-Case Assumptions
	Slide 15: Tightening the Bounds
	Slide 16: Lecture Outline
	Slide 17: The Obvious Interprocedural Solution
	Slide 18: The Obvious Interprocedural Solution
	Slide 19: Cost/Benefit of supergraphs
	Slide 20: Cost/Benefit of supergraphs
	Slide 21: Call Graphs
	Slide 22: Call Graphs
	Slide 23: Call Graphs
	Slide 24: The Other Thing About SuperGraphs
	Slide 25: The Other Thing About SuperGraphs
	Slide 26: The Other Thing About SuperGraphs
	Slide 27: Lecture Outline
	Slide 28: (Calling) Context Sensitivity
	Slide 29: Call Strings and K-CFA
	Slide 30: Another Form of Context Sensitivity
	Slide 31: Another Form of Context Sensitivity
	Slide 32: Lecture Outline
	Slide 33: summary Functions
	Slide 34: Wrap-up

