
EXERCISE 4

1

LLVM REGISTER OPERATION REVIEWS

Write your name and answer the following on a piece of paper

• Write out the corresponding LLVM bitcode program for the following:

int main(int argc){

 int i = 0;

 while (i < argc){

 i = i + 1;

 }

 return i;

}

EXERCISE 4

2

LLVM REGISTER OPERATION REVIEWS

Write your name and answer the following on a piece of paper

• Write out the corresponding LLVM bitcode program for the following:

int main(int argc){

 int i = 0;

 while (i < argc){

 i = i + 1;

 }

 return i;

}

ADMINISTRIVIA
AND
ANNOUNCEMENTS

CLASS PROGRESS

WE’RE GEARING UP TO BUILD OUR OWN
PROGRAM ANALYSES

- WORKING THROUGH A GOOD
PROGRAM REPRESENTATION

- LLVM BITCODE IS A NICE “GENERIC”
TARGET

4

LLVM BITCODE MEMORY
EECS 677: Software Security Evaluation

Drew Davidson

6

LAST TIME: LLVM BITCODE & REGISTERS
REVIEW: LAST LECTURE

LOW-LEVEL LANGUAGE

− Targets an abstract machine

− Uses a system of (infinite) named

registers to perform computation

− Registers must be in SSA format

7

SSA FORMAT
REVIEW: LAST LECTURE

STATIC SINGLE ASSIGNMENT

− A variable may be assigned at only

one program point

8

PHI INSTRUCTIONS
REVIEW: LAST LECTURE

RESOLVE THE NEED TO UNIFY REGISTERS

− Each argument is a pair [V,B] where

− B is a predecessor basic block to the

current block containing the phi instruction

− V is a value to assign when block B is the

dynamic predecessor

dest = phi <type> [val1, pred1], [val2, pred2] …

9

PHI INSTRUCTIONS
REVIEW: LAST LECTURE

LET’S IMPLEMENT

THIS CODE:

int main(int argc){

 int res = 1;

 if (argc > 1){

 res = 7;

 }

 return res;

}

10

PHI INSTRUCTIONS
REVIEW: LAST LECTURE

LET’S IMPLEMENTATION
THIS CODE:

int main(int argc){

 int i = 0;

 while (i < argc){

 i = i + 1;

 }

 return i;

}

11

ASIDE: FANCY SYNTAX HIGHLIGHTING
DREW’S COOL TOOLS

TIRED:

WIRED:

12

ASIDE: FANCY SYNTAX HIGHLIGHTING
DREW’S COOL TOOLS

TURNS OUT SYNTAX HIGHLIGHTERS ARE
AVAILABLE FOR SEVERAL EDITORS

− vim (my personal choice)

− emacs

− vscode

FILES ARE IN THE GIT REPO

https://github.com/llvm/llvm-project

Under the directory llvm/utils

TIRED:

WIRED:

If you don’t want to download all that code, check

https://analysis.cool/llvm-syntax.tgz

https://github.com/llvm/llvm-project
https://github.com/llvm/llvm-project
https://github.com/llvm/llvm-project
https://analysis.cool/llvm_syntax.tgz
https://analysis.cool/llvm_syntax.tgz
https://analysis.cool/llvm_syntax.tgz

13

THIS TIME: LLVM MEMORY
LECTURE OVERVIEW

DEALING WITH MEMORY

− Ultimately we’ll need to consider

storage other than the infinite virtual

register abstraction

Thnks
Fr th
MMRS

LECTURE OUTLINE

• LLVM Memory

• Load/Store

• The dreaded GEP

15

CONCRETE MEMORY
LLVM MEMORY

LLVM BITCODE ATTEMPTS TO
REPRESENT COMMONALITIES OF
MEMORY ON REAL ARCHITECTURES

So, what is computer memory like

(from the CS perspective)?

A 1-D array of cells

Numeric addresses (of some size)

Cells contain numeric values (of some size)

16

ASCRIBED MEANING
LLVM MEMORY

3GL LANGUAGE NOTIONS ARE
SIMULATED THROUGH CONVENTION

Functions

Variables

Complex data types (arrays, structs, classes)

0x1 0x2 0x3 0x4

17

ABSTRACTING MEMORY
LLVM MEMORY

ENCODES THE CONCEPTS OF LOCAL AND GLOBAL
MEMORY

Local memory: within a function activation

Global memory: static in the data section

Notably absent: heap memory With infinite registers,

Why have local memory?

int main(){

 int a;

 int * p;

 p = &a;

}

Because we might take the address of a local

(p points to a)

18

ALLOCATION
LLVM MEMORY

ALLOCATING GLOBAL MEMORY

@glb1 = global i32 2

@cnst2 = constant i32 3

ALLOCATING LOCAL MEMORY

%reg = alloca i64

Note: some architectures either require or suggest (for speed)

 that memory be type aligned, e.g.:

 A 4-byte type (like i32) is allocated in a memory address that is a multiple of 4

 An 8-byte type (like i64) is allocated in a memory address that is a multiple of 8

To enforce this requirement, allocation can use the align <Num> argument

, align 4

, align 4

, align 8

LECTURE OUTLINE

• LLVM Memory

• Load/Store

• The dreaded GEP

20

POINTER TYPES
LLVM MEMORY

%reg = alloca i32, align 4

Here, %reg has type i32* : a pointer type (a pointer that points at an i32)

MEMORY LOCATIONS ARE ACCESSED THROUGH
POINTERS

Numeric types whose values are memory addressed

A pointer to a 32-bit integer has type i32*

A pointer to an 8-bit integer has type i8*

A pointer to an 8-bit integer has type i8*

Note, there is a “generic pointer” type that leaves the type being pointed to out

21

LLVM MEMORY: LOAD AND STORE
LLVM MEMORY

LOAD

<dstOpd> = load <dstType>, <srcType> <srcOpd>, align <align>

%reg = load i32, i32* %var1ptr, align 4

STORE

store <srcType> <srcOpd>, <dstType> <dstOpd>, align <align>

store i32 1 , i32* %var1ptr, align 4

22

LLVM MEMORY: GLOBAL MEMORY EXAMPLE
LLVM MEMORY

23

LLVM MEMORY: LOOK, NO SSA!
LLVM BITCODE

The VALUE OF the register doesn’t change
The VALUE AT the register is what changes!

24

LLVM MEMORY: LOOK, NO SSA!
LLVM BITCODE

34000000

%valptr: 0x4080

Address

0x4080

Address

0x4081

Address

0x4080

Address

0x4081

25

LLVM MEMORY: AGGREGATE TYPES
LLVM BITCODE

%Point = type { i32, i32 }

RECALL THAT BITCODE IS A TYPED LANGUAGE

%ptr = alloca %Point, align 4

Declare an aggregate type (think struct)

Allocate an aggregate type

%arrayptr = alloca [8 x i32], align 16

Allocate an array

%ArrSize8 = type [8 x 32]

%struct = type {i32, %ArrSize8}

Allocate a struct with an array in it

26

LLVM MEMORY: ACCESSING AGGREGATE MEMORY
LLVM BITCODE

AT THIS POINT, WE NEED TO DISCUSS HOW TO READ AN ARRAY INDEX OR FIELD

There is a powerful, but somewhat complicated instruction to do it, called getelementptr (GEP)

GEP never actually reads memory, it just computes what the offset from a base location would be

LECTURE OUTLINE

• LLVM Memory

• Load/Store

• The dreaded GEP

28

GETELEMENTPTR
THE DREADED GEP

HERE IS THE BASIC FORMAT OF A GEP

<result> = getelementptr <ty>, ptr <ptrval>{, [inrange] <ty> <idx>}*

The first argument is always a type used as the basis for the calculations. The second argument is always a

pointer or a vector of pointers, and is the base address to start from. The remaining arguments are indices that

indicate which of the elements of the aggregate object are indexed. The interpretation of each index is

dependent on the type being indexed into. The first index always indexes the pointer value given as the second

argument, the second index indexes a value of the type pointed to (not necessarily the value directly pointed

to, since the first index can be non-zero), etc. The first type indexed into must be a pointer value, subsequent

types can be arrays, vectors, and structs. Note that subsequent types being indexed into can never be pointers,

since that would require loading the pointer before continuing calculation.

HERE IS A SNIPPET OF THE DOCUMENTATION OF THE SYNTAX:

29

GETELEMENTPTR
THE DREADED GEP

LET ME (MAYBE?) S IMPLIFY THIS A BIT WITH A SLIGHT REFORMAT OF GEP

<result> = getelementptr <tywork>, <tysrc> <src>, <idxtype> <siblingidx>, [<idxtype> <fieldidx>]+

HERE IS MY EXPLANATION OF THIS VERSION OF GEP:

Assume base is a pointer into some array of somethings (possibly a nested data structure)

- Arg 1: <tywork>: Specify the type of the somethings

- Arg 2: <tysrc> <src>: base address to start your computation

- Arg 3: <idxtype> <siblingidx>: array index to jump forward from the base address

(end of optional arguments)

- Arg 4+: <idxtype> <fieldidx>: field traversal to index into the fields of the nested data

structure

array indexbase Field traversal

30

GETELEMENTPTR
THE DREADED GEP

LET ME (MAYBE?) S IMPLIFY THIS A BIT WITH A SLIGHT REFORMAT OF GEP

<result> = getelementptr <tywork>, <tysrc> <src>, <idxtype> <siblingidx>, [<idxtype> <fieldidx>]+

array indexbase Field traversal

Very generic format to capture the

large variety of ways that you need

to index into memory

Answer:

Basic GEP invocations handle simple

cases

Complex GEP invocations handle

complex cases

31

GETELEMENTPTR
THE DREADED GEP

LET ME (MAYBE?) S IMPLIFY THIS A BIT WITH A SLIGHT REFORMAT OF GEP

<result> = getelementptr <tywork>, <tysrc> <src>, <idxtype> <siblingidx>, [<idxtype> <fieldidx>]+

array indexbase Field traversal

Very generic format to capture the

large variety of ways that you need

to index into memory

Answer:

Basic GEP invocations handle simple

cases

Complex GEP invocations handle

complex cases

getelementptr %T2, ptr @ptr_n1, i64 0, i64 0

7 7 7

32

GETELEMENTPTR: PICTORIALLY
THE DREADED GEP

Can be helpful to walk through memory as a tree

n1

n2 n3

a0 b0 c0

%T1 = type { i32, i32, i32 }

%T2 = type [2 x %T1]

@ptr_n1 = global %T2 [{ i32 1, i32 2, i32 3 }, { i32 4, i32 5, i32 6}]

a1 b1 c1

ptr_n1

getelementptr %T2, ptr @ptr_n1, i64 0, i64 0ptr_n2 =

“base addr” “sibling 0” “field 0”

ptr_n2

33

GETELEMENTPTR: PICTORIALLY
THE DREADED GEP

Can be helpful to walk through memory as a tree

n1

n2 n3

a0 b0 c0

%T1 = type { i32, i32, i32 }

%T2 = type [2 x %T1]

@ptr_n1 = global %T2 [{ i32 1, i32 2, i32 3 }, { i32 4, i32 5, i32 6}]

a1 b1 c1

ptr_n1

getelementptr %T1, ptr @ptr_n2, i64 1, i64 1ptr_b1 =

ptr_n2

getelementptr %T2, ptr @ptr_n1, i64 0, i64 0ptr_n2 =

“base addr” “sibling 1” “field 1”

ptr_b1

34

GETELEMENTPTR: PICTORIALLY
THE DREADED GEP

Can be helpful to walk through memory as a tree

n1

n2 n3

a0 b0 c0

%T1 = type { i32, i32, i32 }

%T2 = type [2 x %T1]

@ptr_n1 = global %T2 [{ i32 1, i32 2, i32 3 }, { i32 4, i32 5, i32 6}]

a1 b1 c1

ptr_n1

getelementptr %T1, ptr @ptr_n2, i64 1, i64 1ptr_b1 =

ptr_n2

getelementptr %T2, ptr @ptr_n1, i64 0, i64 0ptr_n2 =

“base addr” “sibling 1” “field 1”

ptr_b1

35

GETELEMENTPTR: YA GOTTA HANDLE C
THE DREADED GEP

MY THEORY: GEP IS DESIGNED TO ACCOMMODATE THE NEEDS OF C SOURCE CODE

struct Inner {

 int32_t a;

 int8_t b;

 char c;

};

struct Outer{

 int32_t k;

 struct Inner m;

}

struct Outer v[3];

int main(){

 v[2].m.c = ‘X’;

}

WRAP-UP

NEXT TIME

A COUPLE MORE BITCODE FEATURES

37

	Slide 1: Exercise 4
	Slide 2: Exercise 4
	Slide 3: Administrivia and Announcements
	Slide 4: Class Progress
	Slide 5: LLVM BITCODE Memory
	Slide 6: Last Time: LLVM BitCode & Registers
	Slide 7: SSA Format
	Slide 8: Phi instructions
	Slide 9: Phi instructions
	Slide 10: Phi instructions
	Slide 11: Aside: Fancy Syntax Highlighting
	Slide 12: Aside: Fancy Syntax Highlighting
	Slide 13: This Time: LLVM memory
	Slide 14: Lecture Outline
	Slide 15: Concrete memory
	Slide 16: Ascribed Meaning
	Slide 17: Abstracting memory
	Slide 18: Allocation
	Slide 19: Lecture Outline
	Slide 20: Pointer Types
	Slide 21: LLVM MEMORY: Load and STORE
	Slide 22: LLVM MEMORY: Global Memory Example
	Slide 23: LLVM MEMORY: LoOK, NO SSA!
	Slide 24: LLVM MEMORY: LoOK, NO SSA!
	Slide 25: LLVM MEMORY: Aggregate Types
	Slide 26: LLVM MEMORY: Accessing Aggregate memory
	Slide 27: Lecture Outline
	Slide 28: GetElementPtr
	Slide 29: GetElementPtr
	Slide 30: GetElementPtr
	Slide 31: GetElementPtr
	Slide 32: GetElementPtr: Pictorially
	Slide 33: GetElementPtr: Pictorially
	Slide 34: GetElementPtr: Pictorially
	Slide 35: GetElementPtr: Ya Gotta Handle C
	Slide 36: Wrap-up
	Slide 37: Next Time

