
EXERCISE 33

1

QUIZ 3

ADMINISTRIVIA
AND
ANNOUNCEMENTS

LINTING
EECS 677: Software Security Evaluation

Drew Davidson

4

LAST TIME: SSDLC
REVIEW: LAST LECTURE

CORRESPONDING SECURITY TASKS FOR
THE SOFTWARE DEVELOPMENT LIFECYCLE

Requirement Analysis – Risk Assessment and

Threat models

Design – Security Design Review

Development – Automated Code Analysis

Testing – Security Testing and Code Review

Maintenance and Evolution – Security

Assessment and Configuration

CLASS PROGRESS

HANDLING THE “SOFTER SIDE” OF
SECURITY EVALUATION

5

We’ve described some of the high-level best-

practices, let’s talk about tool support

LECTURE OUTLINE

• Background / Context

• Linting

• Anti-Patterns

• Splint

7

SAD FACT: IT’S EASY TO WRITE INSECURE CODE
LINTING: BACKGROUND/CONTEXT

MANY PROGRAMMING LANGUAGES
HAVE EXPLOITABLE CONSTRUCTS

Programming constructs that do not operate as

intended under unforeseen circumstances

Artistic depiction of C programming

8

RECALL: SECURITY V USABILITY
LINTING OVERVIEW

MAINSTREAM PL PHILOSOPHY
PRIORITIZES SPEED AND SIMPLICITY

C could do more checking, but it doesn’t

- Bounds checking

- Type safety

9

RECALL: SECURITY V USABILITY
LINTING OVERVIEW

EXPECTATIONS OF EFFICIENCY AND
PERFORMANCE ARE HARD TO QUIT!

Disallowing unsafe behavior means going back

on what’s already been accomplished

- Rewrite legacy code

- Give up on some performance

10

CASE STUDY: MELTDOWN AND SPECTRE
LINTING OVERVIEW

THE PROBLEM: BRANCH PREDICTORS
AND SPECULATIVE EXECUTION

Impact: leaking secrets

THE SOLUTION: MEDIATE SPECULATIVE
EXECUTION

Early Fix performance:

OS Bench:

Intel Xeon 84~87%

AMD EPYC 91~94%.

11

RECALL: SECURITY V USABILITY
LINTING OVERVIEW

WAITING FOR BETTER TOOLS

Some feel that the whole of imperative

programming is inherently unsafe

12

RECALL: SECURITY V USABILITY
LINTING OVERVIEW

LECTURE OUTLINE

• Background / Context

• Linting

• Anti-Patterns

• Splint

14

HEURISTIC TOOLS FOR AN IMPERFECT WORLD
LINTING: OVERVIEW

TRY NOT TO SHOOT YOURSELF IN THE FOOT

Highlight the stuff you probably shouldn’t be

doing in the first place

15

CATCH “ANTI-PATTERNS”
HUMAN FACTORS OF SECURITY

COMMON LANGUAGE-LEGAL PAIN-
POINTS

Code that is highly situational, or simply

shouldn’t be legal in hindsight

16

HISTORY: JOHNSON, 1978
HUMAN FACTORS OF SECURITY

NAME INSPIRED BY DRYER LINT TRAPS

Capture the “loose fibers” that come off the

program

Leave the whole of the program intact

CREATED A PROGRAM CALLED “LINT”

Aided in the development of YACC

Originally internal to Bell Labs, eventually

open-sourced

17

PRODUCTION LINTERS
LINTING

MORE MODERN TOOLS

cppcheck – open-source linter

flake8 – python linter

cpplint – Google’s in-house (open-source) linter

Good reminder that coding is still a human process

Also ensures adherence to style guide:

https://google.github.io/styleguide/cppguide.html

https://google.github.io/styleguide/cppguide.html

LECTURE OUTLINE

• Background / Context

• Linting

• Anti-Patterns

• Splint

19

ASSIGNMENT IN PREDICATE
LINTING

20

MACRO POLLUTION
LINTING

21

MACRO POLLUTION
LINTING

#define NOMINMAX

error C2589: '(' : illegal token on right side of '::'

error C2059: syntax error : '::'

22

SEPARATING INITIALIZATION FROM USE
LINTING

23

LINE CONTINUATION WEIRDNESS
LINTING

24

SCOPED INITIALIZATION
LINTING

25

NAMESPACING (GOOD)
LINTING

26

HEURISTIC TOOLS FOR AN IMPERFECT WORLD
LINTING: OVERVIEW

TRY NOT TO SHOOT YOURSELF IN THE FOOT

Highlight the stuff you probably shouldn’t be

doing in the first place

27

RECALL: SECURITY V USABILITY
LINTING OVERVIEW

MANY PROGRAMMING LANGUAGES
HAVE EXPLOITABLE CONSTRUCTS

Capture the “loose fibers” that come off the

program

Leave the whole of the program intact

	Slide 1: Exercise 33
	Slide 2: Administrivia and Announcements
	Slide 3: Linting
	Slide 4: Last Time: SSDLC
	Slide 5: Class Progress
	Slide 6: Lecture Outline
	Slide 7: Sad Fact: It’s easy to write insecure Code
	Slide 8: Recall: Security v Usability
	Slide 9: Recall: Security v Usability
	Slide 10: Case Study: Meltdown and Spectre
	Slide 11: Recall: Security v Usability
	Slide 12: Recall: Security v Usability
	Slide 13: Lecture Outline
	Slide 14: Heuristic tools for an imperfect World
	Slide 15: Catch “Anti-Patterns”
	Slide 16: History: Johnson, 1978
	Slide 17: Production Linters
	Slide 18: Lecture Outline
	Slide 19: Assignment in predicate
	Slide 20: Macro Pollution
	Slide 21: Macro Pollution
	Slide 22: Separating Initialization from USE
	Slide 23: Line Continuation Weirdness
	Slide 24: Scoped Initialization
	Slide 25: Namespacing (Good)
	Slide 26: Heuristic tools for an imperfect World
	Slide 27: Recall: Security v Usability

