
EXERCISE 20

1

CALL TARGET ANALYSIS REVIEW

Write your name and answer the following on a piece of paper
Draw the call graph of the following program: 1: class SupClass{

 2: public:

 3: virtual int fun(SupClass * in){

 4: in->fun();

 5: }

 6: };

 7:

 8: class SubA : public SupClass {

 9: virtual int fun(SupClass * in){

 10: in->fun();

 11: }

 12: };

 13: class SubB : public SupClass {

 14: virtual int fun(SupClass * in){

 15: in->fun();

 16: }

 17: };

 18: int main(){

 19: SupClass * s = new SubA();

 20: s->fun();

 21: }

EXERCISE 20 SOLUTION

2

CALL TARGET ANALYSIS REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

POINTS-TO ANALYSIS
EECS 677: Software Security Evaluation

Drew Davidson

5

LAST TIME: CALL TARGET ANALYSIS
REVIEW: LAST LECTURE

DETERMINE WHERE A (POSSIBLE INDIRECT)
CALL MIGHT GO

Simplistic

– Class Hierarchy Analysis

More Precise (but incomplete)

– Rapid Type Analysis (RTA and it’s elaborations)

Even more precise (but expensive)

- Value Type Analysis (VTA)

1: class SupClass{

 2: public:

 3: virtual int fun(SupClass * in){

 4: in->fun();

 5: }

 6: };

 7:

 8: class SubA : public SupClass {

 9: virtual int fun(SupClass * in){

 10: in->fun();

 11: }

 12: };

 13: class SubB : public SupClass {

 14: virtual int fun(SupClass * in){

 15: in->fun();

 16: }

 17: };

 18: int main(){

 19: SupClass * s = new SubA();

 20: s->fun();

 21: }

6

LAST TIME: CALL TARGET ANALYSIS
REVIEW: LAST LECTURE

INDIRECT CALLS COME FROM…

Dynamic Dispatch

– Virtual functions / Superclass inheritance

1: int foo(char a) { return 1; }

 2: int bar(char a) { return 2; }

 3:

 4: int main(int argc)

 5: {

 6: int (*fun_ptr)(char) = &foo;

 7:

 8: if (argc == 2){

 9: fun_ptr = &bar;

 10: }

 11:

 12: (*fun_ptr)('!');

 13:

 14: }

First-class functions

– Function pointers

CLASS PROGRESS

7

Dataflow

Analysis

CFGs
Lattices

Call

Graphs Reference

types
Heart

LECTURE OUTLINE

• Pointers

• Andersen’s Analysis

• Steensgard’s Analysis

9

REFERENCE TYPES
THINKING ABOUT POINTERS

MULTIPLE NAMES BOUND TO THE SAME “LOCATION”

We will sometimes say…

X and Y “refer to the same value”

X and Y are “aliases”

[]

addr

0x4090

0x4090 0x4090

addr

0x4094

“a”
addr

0x409c

“b”

10

REFERENCE TYPES
THINKING ABOUT POINTERS

MULTIPLE NAMES BOUND TO THE SAME LOCATION

We will sometimes say…

X and Y “refer to the same value”

X and Y are “aliases”

12

addr

0x4094

“a”

“b”

HUGELY IMPORTANCE FOR DATAFLOW ANALYSIS

Cause a data leak through an alias

Change control flow through an alias
a = SOURCE ()

SINK(b)

11

NOT JUST A C LANGUAGE THING!
THINKING ABOUT POINTERS

PYTHON

1: a = []

 2: b = a

 3: b.append(1)

 4: print(a)

Line 4 prints “[1]”

Even though there is no a.append !

[]

addr

0x4090

0x4090 0x4090

addr

0x4094

“a”
addr

0x409c

“b”

12

POINTERS: A SPECIAL REFERENCE TYPE
THINKING ABOUT POINTERS

1: int main(int argc)

 2: {

 3: int a = 1;

 4: int * b = &a;

 5: int * c;

 6: int * d;

 7: c = &a;

 8: *c = 2;

 9: *d = 3;

 10: }

[]

addr

0x4090

0x4090 0x4090

addr

0x4094

“a”
addr

0x409c

“b”

13

POINTS-TO ANALYSIS
THINKING ABOUT POINTERS

THE FORMAL ANALYSIS TO DETERMINE IF

BINDINGS POINT TO THE SAME LOCATION

1: int main(int argc)

 2: {

 3: int a = 1;

 4: int * b = &a;

 5: int * c;

 6: int * d;

 7: c = &a;

 8: *c = 2;

 9: *d = 3;

 10: }

I know what you’re thinking…

Who points to who?

14

“THIS GUY HAS ONE TRICK” – YOU, MAYBE
THINKING ABOUT POINTERS

Another flow-sensitive lattice

saturation algorithm?!

No!

15

MAY-POINT VS MUST-POINT
THINKING ABOUT POINTERS

MAY-POINT(P)

The set of locations to which p might refer

MUST-POINT(P)

The set of locations to which p must refer

LECTURE OUTLINE

• May-point v Must-point

• Andersen’s Analysis

• Steensgard’s Analysis

17

SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS

p = &a;

q = p;

p = &b;

r = p;

Program

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

18

SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS

19

SOLVING SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS

p = &a;

q = p;

p = &b;

r = p;

p ⊇ {a}

q ⊇ p

p ⊇ {b}

r ⊇ p

pts(p) = ∅
pts(q) = ∅
pts(r) = ∅
pts(a) = ∅
pts(b) = ∅

pts(p) = {a,b}

pts(q) = {a,b}

pts(r) = {a,b}

pts(a) = ∅
pts(b) = ∅

Initial FinalConstraintsProgram

APPLY CONSTRAINT RULES UNTIL SATURATION

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

20

ANOTHER EXAMPLE
ANDERSEN’S ANALYSIS

p ⊇ {a}

q ⊇ {b}

*p ⊇ q

r ⊇ {c}

s ⊇ p

t ⊇ *p

*s ⊇ r

Initial FinalConstraintsProgram

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

p = &a

q = &b

*p = q;

r = &c;

s = p;

t = *p;

*s = r;

pts(p) = { a }

pts(q) = { b }

pts(r) = { c }

pts(s) = ∅
pts(t) = ∅

pts(a) = ∅
pts(b) = ∅
pts(c) = ∅

pts(p) = { a }

pts(q) = { b }

pts(r) = { c }

pts(s) = { a }

pts(t) = { b, c }

pts(a) = { b, c }

pts(b) = ∅
pts(c) = ∅

21

SOLVING CONSTRAINTS AS REACHABILITY
ANDERSEN’S ANALYSIS

Graph closure on the subset relation

22

ANDERSEN’S ALGORITHM: REACHABILITY
REVIEW: LAST LECTURE

REACHABILITY FORMULATION

Step 1: List pointer-related operations

Step 2: Saturate points-to graph

Step 3: Compute node reachability

p ⊇ {a}

p ⊇ {b}

m ⊇ {p}

r ⊇ *m

q ⊇ {c}

m ⊇ {q}

Initial Final

ConstraintsProgram

p = &a

p = &b

m =&p;

r = *m;

q = &c;

m = &q

pts(a) = { }

pts(b) = { }

pts(m) = { }

pts(p) = { }

pts(q) = { }

pts(r) = { }

pts(a) = { }

pts(b) = { }

pts(m) = { p, q }

pts(p) = { a, b }

pts(q) = { c }

pts(r) = { a, b, c }

a

p

b

r

m

q
c

23

OVERHEAD
ANDERSEN’S ANALYSIS

WORST CASE: CUBIC TIME

That’s not great!

OPTIMIZATION:

CYCLE ELIMINATION

Detect and collapse SCCs in the

points-to relation

LECTURE OUTLINE

• May-point v Must-point

• Andersen’s Analysis

• Steensgard’s Analysis

25

AN ALTERNATIVE APPROACH
STEENSGARD’S ANALYSIS

AIM FOR NEAR-LINEAR-TIME POINTS-TO ANALYSIS

Going to require us to reduce our search-space somewhat

INTUITION: EQUALITY CONSTRAINTS

Do away with the notion of subsets

IN PRACTICE
Step 1

List pointer-related operations

Step 2

Induce set of subset constraints

Step 3

Solve system of constraints

REACHABILITY FORMULATION

Step 1

List pointer-related operations

Step 2

Saturate points-to graph

Step 3

Compute node reachability

STEENGARD’S ALGORITHM
AN EFFICIENT OVER-APPROXIMATION

equality

1-out

Andersen’s

Steengaard’s

27

EQUALITY CONSTRAINTS
STEENSGARD’S ANALYSIS

28

EQUALITY CONSTRAINTS
STEENSGARD’S ANALYSIS

a,b,cp,qm r

a,bpm r cq

a,bpm r

a,bpm

a,bp

ap

p = &a

p = &b

m = &p

r = *m

q = &c

m = &q

29

EQUALITY CONSTRAINTS
STEENSGARD’S ANALYSIS

Andersen’s Steensgard’s

WRAP-UP

	Slide 1: Exercise 20
	Slide 2: Exercise 20 Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Points-To Analysis
	Slide 5: Last Time: Call Target Analysis
	Slide 6: Last Time: Call Target Analysis
	Slide 7: Class Progress
	Slide 8: Lecture Outline
	Slide 9: Reference Types
	Slide 10: Reference Types
	Slide 11: Not Just a C Language thing!
	Slide 12: Pointers: A Special Reference Type
	Slide 13: Points-To Analysis
	Slide 14: “This Guy Has one trick” – You, Maybe
	Slide 15: May-Point vs Must-point
	Slide 16: Lecture Outline
	Slide 17: Subset Constraints
	Slide 18: Subset Constraints
	Slide 19: Solving Subset Constraints
	Slide 20: Another Example
	Slide 21: Solving Constraints AS reachability
	Slide 22: Andersen’s Algorithm: Reachability
	Slide 23: Overhead
	Slide 24: Lecture Outline
	Slide 25: An alternative Approach
	Slide 26
	Slide 27: Equality Constraints
	Slide 28: Equality Constraints
	Slide 29: Equality Constraints
	Slide 30: Wrap-up

