
EXERCISE 20
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CALL TARGET ANALYSIS REVIEW

Write your name and answer the following on a piece of paper
Draw the call graph of the following program: 1: class SupClass{

  2: public:

  3: virtual int fun(SupClass * in){

  4: in->fun();

  5: }

  6: };

  7: 

  8: class SubA : public SupClass {

  9: virtual int fun(SupClass * in){

 10: in->fun();

 11: }

 12: };

 13: class SubB : public SupClass {

 14: virtual int fun(SupClass * in){

 15: in->fun();

 16: }

 17: };

 18: int main(){

 19: SupClass * s = new SubA();

 20: s->fun();

 21: }



EXERCISE 20 SOLUTION
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CALL TARGET ANALYSIS REVIEW



ADMINISTRIVIA
AND 
ANNOUNCEMENTS



POINTS-TO ANALYSIS
EECS 677: Software Security Evaluation

Drew Davidson



5

LAST TIME: CALL TARGET ANALYSIS
REVIEW: LAST LECTURE

DETERMINE WHERE A (POSSIBLE INDIRECT) 
CALL MIGHT GO

Simplistic

– Class Hierarchy Analysis

More Precise (but incomplete)

– Rapid Type Analysis (RTA and it’s elaborations)

Even more precise (but expensive)

- Value Type Analysis (VTA)

1: class SupClass{

  2: public:

  3: virtual int fun(SupClass * in){

  4: in->fun();

  5: }

  6: };

  7: 

  8: class SubA : public SupClass {

  9: virtual int fun(SupClass * in){

 10: in->fun();

 11: }

 12: };

 13: class SubB : public SupClass {

 14: virtual int fun(SupClass * in){

 15: in->fun();

 16: }

 17: };

 18: int main(){

 19: SupClass * s = new SubA();

 20: s->fun();

 21: }
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LAST TIME: CALL TARGET ANALYSIS
REVIEW: LAST LECTURE

INDIRECT CALLS COME FROM…

Dynamic Dispatch

– Virtual functions / Superclass inheritance 

1: int foo(char a) { return 1; }

  2: int bar(char a) { return 2; }

  3: 

  4: int main(int argc)

  5: {

  6: int (*fun_ptr)(char) = &foo;

  7: 

  8: if (argc == 2){

  9: fun_ptr = &bar;

 10: }

 11: 

 12: (*fun_ptr)('!');

 13: 

 14: }

First-class functions

– Function pointers



CLASS PROGRESS
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Dataflow

Analysis

CFGs
Lattices

Call

Graphs Reference

types
Heart



LECTURE OUTLINE

• Pointers

• Andersen’s Analysis

• Steensgard’s Analysis
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REFERENCE TYPES
THINKING ABOUT POINTERS

MULTIPLE NAMES BOUND TO THE SAME “LOCATION”

We will sometimes say…

X and Y “refer to the same value”

X and Y are “aliases”

[    ]

addr 

0x4090 

0x4090 0x4090

addr 

0x4094 

“a”
addr 

0x409c 

“b”
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REFERENCE TYPES
THINKING ABOUT POINTERS

MULTIPLE NAMES BOUND TO THE SAME LOCATION

We will sometimes say…

X and Y “refer to the same value”

X and Y are “aliases”

12

addr 

0x4094 

“a”

“b”

HUGELY IMPORTANCE FOR DATAFLOW ANALYSIS

Cause a data leak through an alias

Change control flow through an alias
a = SOURCE ()

SINK(b)
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NOT JUST A C LANGUAGE THING!
THINKING ABOUT POINTERS

PYTHON

1: a = []

  2: b = a

  3: b.append(1)

  4: print(a)

Line 4 prints “[1]”

Even though there is no a.append !

[    ]

addr 

0x4090 

0x4090 0x4090

addr 

0x4094 

“a”
addr 

0x409c 

“b”
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POINTERS: A SPECIAL REFERENCE TYPE
THINKING ABOUT POINTERS

1: int main(int argc)

  2: {

  3: int a = 1;

  4: int * b = &a;

  5: int * c;

  6: int * d;

  7: c = &a;

  8: *c = 2;

  9: *d = 3;

 10: }

[    ]

addr 

0x4090 

0x4090 0x4090

addr 

0x4094 

“a”
addr 

0x409c 

“b”
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POINTS-TO ANALYSIS
THINKING ABOUT POINTERS

THE FORMAL ANALYSIS TO DETERMINE IF 

BINDINGS POINT TO THE SAME LOCATION

1: int main(int argc)

  2: {

  3: int a = 1;

  4: int * b = &a;

  5: int * c;

  6: int * d;

  7: c = &a;

  8: *c = 2;

  9: *d = 3;

 10: }

I know what you’re thinking…

Who points to who?
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“THIS GUY HAS ONE TRICK” – YOU, MAYBE
THINKING ABOUT POINTERS

Another flow-sensitive lattice 

saturation algorithm?!

No!
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MAY-POINT VS MUST-POINT
THINKING ABOUT POINTERS

MAY-POINT(P)

The set of locations to which p might refer

MUST-POINT(P)

The set of locations to which p must refer



LECTURE OUTLINE

• May-point v Must-point

• Andersen’s Analysis

• Steensgard’s Analysis



17

SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS

p = &a;

q = p;

p = &b;

r = p;

Program

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints
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SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS
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SOLVING SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS

p = &a;

q = p;

p = &b;

r = p;

p ⊇ {a}

q ⊇ p

p ⊇ {b}

r ⊇ p

pts(p) = ∅
pts(q) = ∅
pts(r) = ∅
pts(a) = ∅
pts(b) = ∅

pts(p) = {a,b}

pts(q) = {a,b}

pts(r) = {a,b}

pts(a) = ∅
pts(b) = ∅

Initial FinalConstraintsProgram

APPLY CONSTRAINT RULES UNTIL SATURATION

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints
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ANOTHER EXAMPLE
ANDERSEN’S ANALYSIS

p ⊇ {a} 

q ⊇ {b}

*p ⊇ q

r ⊇ {c}

s ⊇ p 

t ⊇ *p

*s ⊇ r

Initial FinalConstraintsProgram

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

p = &a

q = &b

*p = q;

r = &c;

s = p;

t = *p;

*s = r;

pts(p) = { a }

pts(q) = { b }

pts(r) = { c }

pts(s) = ∅
pts(t) = ∅ 

pts(a) = ∅
pts(b) = ∅
pts(c) = ∅

pts(p) = { a }

pts(q) = { b }

pts(r) = { c }

pts(s) = { a }

pts(t) = { b, c }

pts(a) = { b, c } 

pts(b) = ∅
pts(c) = ∅
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SOLVING CONSTRAINTS AS REACHABILITY
ANDERSEN’S ANALYSIS

Graph closure on the subset relation
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ANDERSEN’S ALGORITHM: REACHABILITY
REVIEW: LAST LECTURE

REACHABILITY FORMULATION

Step 1: List pointer-related operations

Step 2: Saturate points-to graph

Step 3: Compute node reachability

p ⊇ {a} 

p ⊇ {b}

m ⊇ {p}

r ⊇ *m

q ⊇ {c} 

m ⊇ {q}

Initial Final

ConstraintsProgram

p = &a

p = &b

m =&p;

r = *m;

q = &c;

m = &q

pts(a) = { }

pts(b) = { }

pts(m) = { }

pts(p) = { }

pts(q) = { }  

pts(r) = { }

pts(a) = { }

pts(b) = { }

pts(m) = { p, q  }

pts(p) = { a, b }

pts(q) = { c }

pts(r) = { a, b, c } 

a

p

b

r

m

q
c
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OVERHEAD
ANDERSEN’S ANALYSIS

WORST CASE: CUBIC TIME

That’s not great!

OPTIMIZATION: 

CYCLE ELIMINATION

Detect and collapse SCCs in the 

points-to relation



LECTURE OUTLINE

• May-point v Must-point

• Andersen’s Analysis

• Steensgard’s Analysis
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AN ALTERNATIVE APPROACH
STEENSGARD’S  ANALYSIS

AIM FOR NEAR-LINEAR-TIME POINTS-TO ANALYSIS

Going to require us to reduce our search-space somewhat 

INTUITION: EQUALITY CONSTRAINTS

Do away with the notion of subsets



IN PRACTICE
Step 1

List pointer-related operations

Step 2

Induce set of subset constraints

Step 3

Solve system of constraints

REACHABILITY FORMULATION

Step 1

List pointer-related operations

Step 2

Saturate points-to graph

Step 3

Compute node reachability

STEENGARD’S ALGORITHM
AN EFFICIENT OVER-APPROXIMATION

equality

1-out

Andersen’s

Steengaard’s
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EQUALITY CONSTRAINTS
STEENSGARD’S  ANALYSIS
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EQUALITY CONSTRAINTS
STEENSGARD’S  ANALYSIS

a,b,cp,qm r

a,bpm r cq

a,bpm r

a,bpm

a,bp

ap

p = &a

p = &b

m = &p

r = *m

q = &c

m = &q
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EQUALITY CONSTRAINTS
STEENSGARD’S  ANALYSIS

Andersen’s Steensgard’s



WRAP-UP
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