EXERCISE 20

CALL TARGET ANALYSIS REVIEW

Write your name and answer the following on a piece of paper
Draw the call graph of the following program: SupClass |

virtual int fun (SupClass
in->fun () ;

}

SubA : SupClass
virtual int fun (SupClass
in->fun () ;

O J oy Ul x W DN K

}

SubB : SupClass
virtual int fun (SupClass
in->fun () ;

}
} 7
: int main () {
SupClass * s =
s=>fun () ;



EXERCISE 20 SOLUTION
CALL TARGET ANALYSIS REVIEW



ADMINISTRIVIA
AND
ANNOUNCEMENTS



\@%"f

POINTS-TO ANALYSIS

EECS 677: Software Security Evaluation

Drew Davidson



LAST TIME: CALL TARGET ANALYSIS

REVIEW: LAST LECTURE

SupClass{

virtual int fun (SupClass
in->fun () ;

DETERMINE WHERE A (POSSIBLE INDIRECT)

CALL MIGHT GO \

Simplistic

— Class Hierarchy Analysis
More Precise (but incomplete) SubA SupClass
— Rapid Type Analysis (RTA and it’s elaborations) : Virtlllal int fun(SupClass
Even more precise (but expensive) : in->tun();

- Value Type Analysis (VTA)

O J oy Ul i W DN K

}

SubB : SupClass
virtual int fun (SupClass
in->fun () ;
}
I
: int main () {
SupClass * s =
s=>fun () ;




LAST TIME: CALL TARGET ANALYSIS

REVIEW: LAST LECTURE

int foo(char a) {
int bar (char a) {
INDIRECT CALLS COME FROM...
int main(int argc)

Dynamic Dispatch {

. . . . ] t * £ t h = &f ;
— Virtual functions / Superclass inheritance int (*fun_ptr) (char) ole

(argc == 2){
fun ptr = &bar;

1:
2
3:
4
5:
6:
7
8:

First-class functions :
— Function pointers : }

(*fun ptr) ("1 ")




CLASS PROGRESS

’ o ot
- CFGs
w / ol

Lattices |

" 4

” :

Ag O Call
. | Graphs
. ‘\ s - " ,r

Dataflow
Analysis

1ooRY

|

Reference

types
Sl

\ . 4’&




</

@

LECTURE OUTLINE /‘\
* Pointers / 4
* Andersen’s Analysis ‘
 Steensgard’s Analysis ‘

[t

N
\y,



REFERENCE TYPES

THINKING ABOUT POINTERS

MULTIPLE NAMES BOUND TO THE SAME “LOCATION”

We will sometimes say...

addr addr addr

14 M ”
X and Y are “aliases 0Xx4090 0Xx4094 0x409¢

X and Y “refer to the same value”
[ ] 0x4090 || 0x4090




REFERENCE TYPES

THINKING ABOUT POINTERS

MULTIPLE NAMES BOUND TO THE SAME LOCATION

. ) addr
We will sometimes say... 0x4094

X and Y are “aliases”

X and Y “refer to the same value” 12
HUGELY IMPORTANCE FOR DATAFLOW ANALYSIS
Cause a data leak through an alias
a = SOURCE ()

Change control flow through an alias SINK(b)



NOT JUST A C LANGUAGE THING!

THINKING ABOUT POINTERS

PYTHON
addr addr addr
0x4090 0x4094 0x409c

[ ] 0x4090 || 0x4090

Line 4 prints “[1]”
Even though there is no a.append !



POINTERS: A SPECIAL REFERENCE TYPE

THINKING ABOUT POINTERS

: int main (int argc)
| addr addr addr
int 0x4090 0x4094 0x409c

a
int *
*
*

int [ 1 || ox4090 || 0x4090

1
2
3:
4
5:
6:
7
8 :
9:
0:

1




POINTS-TO ANALYSIS

THINKING ABOUT POINTERS

THE FORMAL ANALYSIS TO DETERMINE IF

BINDINGS POINT TO THE SAME LOCATION

| know what you’re thinking...

Who points to who?

13



“THIS GUY HAS ONE TRICK” - YOU, MAYBE

THINKING ABOUT POINTERS

Another flow-sensitive lattice
saturation algorithm?!

No!

14



MAY-POINT VS MUST-POINT

THINKING ABOUT POINTERS

MAY-POINT(P)

The set of locations to which p might refer

MusT-POINT(P)

The set of locations to which p must refer



LECTURE OUTLINE

* May-point v Must-point
* Andersen’s Analysis

 Steensgard’s Analysis



SUBSET CONSTRAINTS

ANDERSEN’S ANALYSIS

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

Program
p = &a;
q=p;
p = &b;
r=p;

17



%

SUBSET CONSTRAINTS

ANDERSEN’S ANALYSIS

Constraint type | Assighment | Constraint Meaning
Base a =&b a 2 {b} loc(b) € pts(a)
Simple a=b a2b pts(a) 2 pts(b)
Complex a="%b a 2 *b vvepts(b). pts(a) 2 pts(v)
Complex *a=b *a2 b vvepts(a). pts(v) 2 pts(b)




SOLVING SUBSET CONSTRAINTS

ANDERSEN’S ANALYSIS

APPLY CONSTRAINT RULES UNTIL SATURATION

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

Program Constraints Initial Final

p = &aq; p 2 {a} pts(p) = @ pts(p) = {a,b}

q=p; q20p pts(q) = @ pts(q) = {a,b}

p = &b; p 2 {b} pts(r) = @ pts(r) = {a,b}

r=p; r2p pts(a) = @ pts(a) = @
pts(b) = @ pts(b) = @



ANOTHER EXAMPLE

ANDERSEN’S ANALYSIS

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

Program Constraints Initial Final
P = da p 2 {a} pts(p) ={a} pts(p) ={a}
17 &b q 2 {b} pts(q) ={b} pts(q) ={b}
P=aq; *p 2 q pts(r) ={c} pts(r) ={c}
M= &G r 2 {c} pts(s) = @ pts(s) ={a}
>= P sDp pts(t) = @ pts(t) ={b, c}
t="p; t2 *p pts(a) = @ pts(a) ={b, c}
A *s Dt pts(b) = @ pts(b) = 0
pts(c) = @ pts(c) = @



- sou

OLVING CONSTRAINTS AS REACHABILITY

ANDERSEN’S ANALYSIS

Graph closure on the subset relation

Assgmt. |(Constraint Meaning Edge
a=&b a 2 {b} b € pts(a) no edge
a=b a2b pts(a) 2 pts(b) b—a
a="*b a2*b |vvepts(b).pts(a) 2 pts(v) no edge
*a=b *a 2 b [Vvvepts(a). pts(v) 2 pts(b) no edge




ANDERSEN’S ALGORITHM: REACHABILITY

REVIEW: LAST LECTURE

Program Constraints

REACHABILITY FORMULATION

. . . p = &a p 2 {a}
Step 1: List pointer-related operations p = &b p 2 {b}
Step 2: Saturate points-to graph m =&p; m_D {p}
Step 3: Compute node reachability = *mf r D_*m
q = &c; q =2 {c}
m = &q m 2 {q}
Assighment | Constraint Meaning Initial Final
2= 8&b a 2 {b} loc(b) € pts(a) pts(a) = {} pts(a) ={}
a=b adb pts(a) 2 pts(b) pts(b) = {} pts(b) =
- - wvepts(b). pis(@) 2 pEs(v) pts(m) = {} pts(m) ={p, q }
pts(p) = {} pts(p)={a,b}
%3 =b *a 2 b vvepts(a). pts(v) 2 pts(b
§ § repe@ et 2P0 | pts(@) = {}  pts(a) =
pts() = {}  pts(r) ={aq,




WORST CASE: CuBIC TIME

That’s not great!

OPTIMIZATION:
CYCLE ELIMINATION

Detect and collapse SCCs in the

points-to relation

OVERHEAD

ANDERSEN’S ANALYSIS




LECTURE OUTLINE

* May-point v Must-point
* Andersen’s Analysis

 Steensgard’s Analysis



AN ALTERNATIVE APPROACH

STEENSGARD’S ANALYSIS

AIM FOR NEAR-LINEAR-TIME POINTS-TO ANALYSIS

Going to require us to reduce our search-space somewhat

INTUITION: EQUALITY CONSTRAINTS

Do away with the notion of subsets

25



STEENGARD’S ALGORITHM

AN EFFICIENT OVER-APPROXIMATION

IN PRACTICE

Step 1

List pointer-related operations
Step 2 equality

Induce set of gLlesEt constraints
Step 3

Solve system of constraints

REACHABILITY FORMULATION
Step 1

List pointer-related operations

Step 2 1-out

Saturate points-to graph

Step 3

Compute node reachability

Andersen’s
Assignment | Constraint Meaning
a=&b a 2 {b} loc(b) € pts(a)
a=b a2b pts(a) 2 pts(b)
a="%b a2*b vvepts(b). pts(a) 2 pts(v)
*a=b *adb vvepts(a). pts(v) 2 pts(b)
Steengaard’s
Assignment | Constraint Meaning
a=&b a 2 {b} loc(b) € pts(a)
a=b a=b pts(a) = pts(b)
a=%b a="%b vvepts(b). pts(a) = pts(v)
*a=b *a=b vvepts(a). pts(v) = pts(b)




%

EQUALITY CONSTRAINTS

STEENSGARD’S ANALYSIS

Constraint type | Assighment | Constraint Meaning
Base a=&b a 2 {b} loc(b) € pts(a)
Simple a=b a=b pts(a) = pts(b)
Complex a="%b a="b vvepts(b). pts(a) = pts(v)
Complex *a=b *fa=b vvepts(a). pts(v) = pts(b)




%

EQUALITY CONSTRAINTS

STEENSGARD’S ANALYSIS

p = &a

g = &c

3
I

Qo

0

5

5



o

s Q0 Do

EQUALITY CONSTRAINTS

STEENSGARD’S ANALYSIS

Andersen’s Steensgard’s






	Slide 1: Exercise 20
	Slide 2: Exercise 20 Solution
	Slide 3: Administrivia and  Announcements
	Slide 4: Points-To Analysis
	Slide 5: Last Time: Call Target Analysis
	Slide 6: Last Time: Call Target Analysis
	Slide 7: Class Progress
	Slide 8: Lecture Outline
	Slide 9: Reference Types
	Slide 10: Reference Types
	Slide 11: Not Just a C Language thing!
	Slide 12: Pointers: A Special Reference Type
	Slide 13: Points-To Analysis
	Slide 14: “This Guy Has one trick” – You, Maybe
	Slide 15: May-Point vs Must-point
	Slide 16: Lecture Outline
	Slide 17: Subset Constraints
	Slide 18: Subset Constraints
	Slide 19: Solving Subset Constraints
	Slide 20: Another Example
	Slide 21: Solving Constraints AS reachability
	Slide 22: Andersen’s Algorithm: Reachability
	Slide 23: Overhead
	Slide 24: Lecture Outline
	Slide 25: An alternative Approach
	Slide 26
	Slide 27: Equality Constraints
	Slide 28: Equality Constraints
	Slide 29: Equality Constraints
	Slide 30: Wrap-up

