EXERCISE 20

CALL TARGET ANALYSIS REVIEW

Write your name and answer the following on a piece of paper

Draw the call graph of the following program
according to CHA

SupClass/{

virtual int fun (SupClass
in->fun () ;

}

SubA : SupClass
virtual int fun (SupClass
in->fun() ;

O J o Ul i W DN

}

SubB : SupClass
virtual int fun (SupClass
in->fun () ;
}
i
: int main () {
SupClass * s =
s=>fun () ;

EXERCISE 20 SOLUTION
CALL TARGET ANALYSIS REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

\@%"f

POINTS-TO ANALYSIS

EECS 677: Software Security Evaluation

Drew Davidson

%LAST TIME: CALL RESOLUTION ANALYSIS

clags 14
WHERE MIGHT A CALL TARGET? \/\{m\\r%ﬂ \41/\(«0(L() { 5
Easy for static dlspatch V)
&Cw&w}\(\ Q"é&‘) ; / |
o¥) el MC ekl P
LBJ 20 |’(L i
“\A,\;% Mo - T o
8 \
VL0 5

/\A’\%# Mo\ll,\ C) |

LAST TIME: CALL RESOLUTION ANALYSIS

REVIEW: CALL TARGETS

CLASS HIERARCHY ANALYSIS

Inheritance implies a constraint over call targets

A £(){
String g () {

A{
String g () {

A{
String g () {

O J o U i W DN

Object . el : A

//////////ii\\\\\ : String g() {

Driver : Driver {
. @ : void main (String[] args) {

A[] aArr = { A(), B()};
(A a : aArr){

Q W
QO
-
‘(QIU
e |

prlnt res.g))

}

RAPID TYPE ANALYSIS (RTA)

A HISTORY OF COMPUTING

RTA = call graph of functions (initially edgeless)
CHA = call graph via class hierarchy analysis
W = worklist
W.push (main)
while not W.empty:

M = pop W

T = allocated types in M

T =T U allocated types in RTA callers of M

foreach callsite(C) in M:

1f C is statically-dispatched:
add edge C to C’s static target

else:
M’ = methods called from M in CHA
M” = M’ N functions declared in T or T-supertypes

add edge from M to each M’
W.pushAll (M")

NN

by pew MO

5
e f <
Q€ obyamp KO

G4

RAPID TYPE ANALYSIS (RTA)

A HISTORY OF COMPUTING

AN INCOMPLETE ANALYSIS!

1:
2:
3:
4
5:
6:
7
8:

static Object gbl;

static void main(String|]
foo();
bar () ;

static void foo () {
Object o = A();
gbl = o;

static wvoid bar () {
gbl.toString () ;

args) {

Call edge to A’s toString missing!
Neither bar or its callers (main) allocated a
type of A

RTA will not include an edge from bar to
toString because neither bar or its callers
(main) allocated any instance that toString
could be called on

OVERVIEW

WE’VE SEEN THE NECESSITY OF MULTI-
FUNCTION ANALYSIS IN REAL-WORLD
PROGRAMS

TIME TO CONSIDER HOW IT IS DONE

@

LECTURE OUTLINE /‘\
* Aliases & Points-to /\ Q
* Andersen’s Analysis ‘
 Steensgard’s Analysis ‘

[t

N
\y,

POINTERS: LOVE TO HATE ‘EM

ALIASES AND POINTS-TO SETS

y4 a b
int z = 4; addr 0x2040 addr 0x2090 addr 0x2090
int * a = &z;
int * b = q; 4 0x2040 0x2040
int * ¢ = &z;

*b = 2;

ALIAS RELATIONSHIPS

ALIASES AND POINTS-TO SETS

Create aliasing relationships

int z = 4;

int * a = &z;
int * b =aq;
int * c = &z;

*b = 2;

ALIASES AND DATAFLOW

ALIASES AND POINTS-TO SETS

These relationships can really mess with the soundness of program verification!

——
int z = 4; Z ! 17
int * a = &z;
int * b =aq;
int * c = &z;

*b = 2;
— 2/ d

SAFETY IN THE PRESENCE OF ALIASES

ALIASES AND POINTS-TO SETS

may-point(p): the set of locations to which p might point

must-point(p): the set of locations to which p must point

Which of these is the “safe” set to track depends on the analysis

For us, we’ll usually over-approximate bad behavior, hence track may-point sets

14

SCALABLE MAY-POINT COMPUTATION

ALIASES AND POINTS-TO SETS

Determining points-to sets is expensive
- Interprocedural analysis somewhat out-of-scope
- Flow-sensitive analysis somewhat out-of-scope

We'll talk about 2 flow-insensitive algorithms

15

LECTURE OUTLINE

* May-point v Must-point
* Andersen’s Analysis

 Steensgard’s Analysis

SUBSET CONSTRAINTS

ANDERSEN’S ANALYSIS

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

Program
p = &a;
q=p;
p = &b;
r=p;

17

%

SUBSET CONSTRAINTS

ANDERSEN’S ANALYSIS

Constraint type | Assighment | Constraint Meaning
Base a =&b a 2 {b} loc(b) € pts(a)
Simple a=b a2b pts(a) 2 pts(b)
Complex a="%b a 2 *b vvepts(b). pts(a) 2 pts(v)
Complex *a=b *a2 b vvepts(a). pts(v) 2 pts(b)

SUBSET CONSTRAINTS

ANDERSEN’S ANALYSIS

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

Program Constraints Initial L Final
@ p = &a; p 2 {a} pts(p) = & K, |z pts(p) = {a,b}
@ @ q=p; qa2p pts(q) =g 47 pts(q) = {a,b}
@ p = &b; p 2 {b} pts(r) =9 pts(r) = {a,b}
L =p; r2p pts(a) = @ pts(a) = @
pts(b) = @ pts(b) = @

ANOTHER EXAMPLE

ANDERSEN’S ANALYSIS

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

Constraints

p =2 {a}
q =2 {b}
*P=2q
r 2 {c}
s2p
t=2*p
*S2Ar

Initial
pts(p) ={a}
pts(q) ={b}
pts(r) ={c}
pts(s) = B ()
pts(t) = L
pts(a) £ ¢ L
pts(b)

(

Final

pts(p) ={a}
pts(q) ={b}
pts(r) ={c}
pts(s) ={a}
pts(t) ={ b, c}
pts(a) ={b, c}
pts(b) = @
pts(c) = @

20

% SOLVING CONSTRAINTS

Graph closure on the subset relation

Assgmt. |(Constraint Meaning Edge
a=&b a 2 {b} b € pts(a) no edge
a=b a2b pts(a) 2 pts(b) b—a
a="*b a2*b |vvepts(b).pts(a) 2 pts(v) no edge
*a=b *a2 b |Vvvepts(a). pts(v) 2 pts(b) no edge

OVERHEAD

ANDERSEN’S ANALYSIS

WORST CASE: CuBIC TIME

That’s not great

OPTIMIZATION: CYCLE ELIMINATION

Detect and collapse SCCs in the points-to relation

22

LECTURE OUTLINE

* May-point v Must-point
* Andersen’s Analysis

 Steensgard’s Analysis

AN ALTERNATIVE APPROACH

STEENSGARD’S ANALYSIS

AIM FOR NEAR-LINEAR-TIME POINTS-TO ANALYSIS

Going to require us to reduce our search-space somewhat

INTUITION: EQUALITY CONSTRAINTS

Do away with the notion of subsets

24

%

EQUALITY CONSTRAINTS

STEENSGARD’S ANALYSIS

Constraint type | Assighment | Constraint Meaning
Base a=&b a 2 {b} loc(b) € pts(a)
Simple a=b a=b pts(a) = pts(b)
Complex a="%b a="b vvepts(b). pts(a) = pts(v)
Complex *a=b *fa=b vvepts(a). pts(v) = pts(b)

%

EQUALITY CONSTRAINTS

STEENSGARD’S ANALYSIS

p = &a

g = &c

3
I

Qo

0

5

5

o

s Q0 Do

EQUALITY CONSTRAINTS

STEENSGARD’S ANALYSIS

Andersen’s Steensgard’s

	Slide 1: Exercise 20
	Slide 2: Exercise 20 SOLUTION
	Slide 3: Administrivia and Announcements
	Slide 4: Points-To Analysis
	Slide 5: Last Time: Call Resolution Analysis
	Slide 6: Last Time: Call Resolution Analysis
	Slide 7: Rapid Type Analysis (RTA)
	Slide 8: Rapid Type Analysis (RTA)
	Slide 9: Overview
	Slide 10: Lecture Outline
	Slide 11: Pointers: Love to Hate ‘EM
	Slide 12: Alias Relationships
	Slide 13: Aliases and Dataflow
	Slide 14: Safety in the Presence of Aliases
	Slide 15: Scalable May-Point Computation
	Slide 16: Lecture Outline
	Slide 17: Subset Constraints
	Slide 18: Subset Constraints
	Slide 19: Subset Constraints
	Slide 20: Another Example
	Slide 21: Solving Constraints
	Slide 22: Overhead
	Slide 23: Lecture Outline
	Slide 24: An alternative Approach
	Slide 25: Equality Constraints
	Slide 26: Equality Constraints
	Slide 27: Equality Constraints
	Slide 28: Wrap-up

