
EXERCISE #21

1

POINTS-TO ANALYSIS REVIEW

Write your name and answer the following on a piece of paper
Draw the points-to graph of the following snippet:

1: int main()

 2: {

 3: p = &x;

 4: if (x == 0){

 5: r = &p;

 6: } else {

 7: q = &y;

 8: }

 9: s = &q;

 10: r = s;

 11: }

Assignment Constraint

a = &b a ⊇ { b }

a = b a ⊇ b

a = *b a ⊇ *b

*a = b *a ⊇ b

EXERCISE #21 SOLUTION

2

POINTS-TO ANALYSIS REVIEW

Assignment Constraint

a = &b a ⊇ { b }

a = b a ⊇ b

a = *b a ⊇ *b

*a = b *a ⊇ b

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Quiz 2 on Monday

Review session: Friday at 6:30 PM, Location TBA

PROGRAM
INSTRUMENTATION
EECS 677: Software Security Evaluation

Drew Davidson

5

ANDERSEN’S ALGORITHM
REVIEW: LAST LECTURE

REACHABILITY FORMULATION

Step 1: Extract pointer-related operations

Step 2: Saturate points-to graph

Step 3: Compute node reachability

6

ANDERSEN’S ALGORITHM: REACHABILITY
REVIEW: LAST LECTURE

REACHABILITY FORMULATION

Step 1: List pointer-related operations

Step 2: Saturate points-to graph

Step 3: Compute node reachability

p ⊇ {a}

p ⊇ {b}

m ⊇ {p}

r ⊇ *m

q ⊇ {c}

m ⊇ {q}

Initial Final

ConstraintsProgram

p = &a

p = &b

m =&p;

r = *m;

q = &c;

m = &q

pts(a) = { }

pts(b) = { }

pts(m) = { }

pts(p) = { }

pts(q) = { }

pts(r) = { }

pts(a) = { }

pts(b) = { }

pts(m) = { p, q }

pts(p) = { a, b }

pts(q) = { c }

pts(r) = { a, b, c }

a

p

b

r

m

q
c

7

POINTS TO AND TYPE SAFTEY
REVIEW: LAST LECTURE

A “FEATURE” OF THE ANALYSIS

Our points-to relationships are somewhat

contrived

*a = b;

*a = *b;

Would a program ever actually

have both of these statements?

PROGRAM
INSTRUMENTATION
EECS 677: Software Security Evaluation

Drew Davidson

LECTURE OUTLINE

• Steensgard’s Analysis

• Static Analysis Underview

• Program Instrumentation

10

OVERHEAD
ANDERSEN’S ANALYSIS

WORST CASE: CUBIC TIME

That’s not great!

OPTIMIZATION:
CYCLE ELIMINATION

Detect and collapse SCCs in the

points-to relation

points-to analysis

scale

prof e

Most of the time is spent in re-analyzing

constraints to get to a fixpoint

11

A MORE-EFFICIENT POINTS-TO
STEENSGARD’S ANALYSIS

RETURN AGAIN TO OUR ANCIENT WISDOM

Simpler abstractions reach fixpoints faster

12

A MORE-EFFICIENT POINTS-TO
STEENSGARD’S ANALYSIS

RETURN AGAIN TO OUR ANCIENT WISDOM

Simpler abstractions reach fixpoints faster

STEENGARD’S ANALYSIS

Limit the points-to graph nodes to have outdegree <= 1

You can only point to 1 node

If you need to point to > 1 node, merge the “pointees”

Simplifies many points-to constraints from subsets to equalities

Achieves near-linear performance

IN PRACTICE
Step 1

List pointer-related operations

Step 2

Induce set of subset constraints

Step 3

Solve system of constraints

REACHABILITY FORMULATION

Step 1

List pointer-related operations

Step 2

Saturate points-to graph

Step 3

Compute node reachability

STEENGARD’S ALGORITHM
AN EFFICIENT OVER-APPROXIMATION

equality

1-out

Andersen’s

Steengaard’s

14

EQUALITY CONSTRAINTS
STEENSGARD’S ANALYSIS

15

EQUALITY CONSTRAINTS
STEENSGARD’S ANALYSIS

a,b,cp,qm r

a,bpm r cq

a,bpm r

a,bpm

a,bp

ap

p = &a

p = &b

m = &p

r = *m

q = &c

m = &q

16

EQUALITY CONSTRAINTS
STEENSGARD’S ANALYSIS

Andersen’s Steensgard’s

p = &x

r = &p

q = &y

s = &q

r = s

x y

p q

r s

pq

xyx y

r s

pq

r s

x y

p q

r s

17

THAT’S POINTS-TO!
STEENSGARD’S ANALYSIS

AN ADDITIONAL OVERLAY ON DATAFLOW

Dataflow facts also flow to aliases

When dereferencing a pointer, consider only pointed-to

objects

LECTURE OUTLINE

• Steensgard’s Analysis

• Static Analysis Underview

• Program Instrumentation

19

STATIC ANALYSIS READY TO GO!
STATIC ANALYSIS UNDERVIEW

DATAFLOW ANALYSIS CAN BE ADOPTED
FOR CHECKING A VARIETY OF SECURITY /
CORRECTNESS PROPERTIES

Forms the basis of a lot of static analysis!

Applicable for a variety of analysis goals

- Security leak detection

- Vulnerable program state detection

- Program understanding

20

STATIC ANALYSIS: BENEFITS
STATIC ANALYSIS UNDERVIEW

“THE ANALYST’S SIEVE”

Focus your attention on potential issues

NON-INTERACTIVE!

Can run in the background

Abstraction obviates need for input

21

LIMITS OF STATIC ANALYSIS
PROGRAM INSTRUMENTATION: BASIC IDEA

PRACTICAL ISSUES

- Unsoundness of bug finding / incompleteness of

program verification

- Scalability

- Significant engineering effort

- Findings may not be super actionable

LECTURE OUTLINE

• Steensgard’s Analysis

• Static Analysis Underview

• Program Instrumentation

23

REVISING DYNAMIC ANALYSIS
PROGRAM INSTRUMENTATION: BASIC IDEA

GIVING UP ON COMPLETE BUG-FINDING

- Finding bugs (even “low-hanging fruit”)

is useful!

BENEFITS

- Scalability

- Sound bug finding

24

BEYOND TESTING
PROGRAM INSTRUMENTATION: BASIC IDEA

LIMITATIONS OF “PLAIN” TESTING

- Property may not be immediately

observable from output alone

- The circumstances under which the

issue occurs may not be obvious

25

PROGRAM INSTRUMENTATION
PROGRAM INSTRUMENTATION: BASIC IDEA

WRITE CODE INTO THE EXECUTABLE
TO GATHER INFORMATION

Addresses both of the previous issues – can

report upon program state and even program

path

1: int main()

 2: {

 3: foo();

 4: cout << “Got here!\n”;

 5: bar();

 6: cout << “Got here2\n”;

 7: baz();

 8: cout << “Got here3\n”;

 11: }

26

EXAMPLE: LLVM INSTRUMENTATION
PROGRAM INSTRUMENTATION: BASIC IDEA

WRITE CODE INTO THE EXECUTABLE
TO GATHER INFORMATION

Addresses both of the previous issues – can

report upon program state and even program

path

1: int main()

 2: {

 3: foo();

 4: cout << “Got here!\n”;

 5: bar();

 6: cout << “Got here2\n”;

 7: baz();

 8: cout << “Got here3\n”;

 11: }

27

INSERTING PROGRAM PROBES
PROGRAM INSTRUMENTATION: BASIC IDEA

MANY PROGRAMMING LANGUAGES HAVE
EXPLOITABLE CONSTRUCTS

Programming constructs that

do not operate as intended

under unforeseen

circumstances

INSERT CHECKS / REPORTS INTO THE
ANALYSIS TARGET

Addresses both of the previous issues – can

report upon program state and even program

path

A NEW CONCERN – THE EFFICIENCY
OF THE (INSTRUMENTED) PROGRAM

Potential slowdown on each program path

OLD CONCERN – THE EFFICIENCY OF

PLACEMENT ANALYSIS

Somewhat limited by the information the

probes can report

28

EXAMPLE: CODE COVERAGE
PROGRAM INSTRUMENTATION: BASIC IDEA

29

EXAMPLE: CODE COVERAGE
PROGRAM INSTRUMENTATION: BASIC IDEA

COUNTING HOW MANY TIMES CERTAIN
BEHAVIORS OF THE PROGRAM ARE
EXERCISED

Why is this useful? (Placing sanitizers)

THIS ACTUALLY TURNS OUT TO BE A
LITTLE BIT TRICKY!

Actually turns out to be a little bit tricky!

We’ll describe some of the issues / solution as

per Ball and Larus, ‘96

WRAP-UP

WE’VE BEGUN TO CONSIDER A WAY TO
MOVE BEYOND STATIC ANALYSIS WHILE
USING OUR EXISTING TOOLS: PROGRAM
INSTRUMENTATION

30

	Slide 1: Exercise #21
	Slide 2: Exercise #21 Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Program Instrumentation
	Slide 5: Andersen’s Algorithm
	Slide 6: Andersen’s Algorithm: Reachability
	Slide 7: Points To and Type Saftey
	Slide 8: Program Instrumentation
	Slide 9: Lecture Outline
	Slide 10: Overhead
	Slide 11: A more-efficient Points-To
	Slide 12: A more-efficient Points-To
	Slide 13
	Slide 14: Equality Constraints
	Slide 15: Equality Constraints
	Slide 16: Equality Constraints
	Slide 17: That’s Points-To!
	Slide 18: Lecture Outline
	Slide 19: Static Analysis Ready to go!
	Slide 20: Static Analysis: Benefits
	Slide 21: Limits of Static Analysis
	Slide 22: Lecture Outline
	Slide 23: Revising Dynamic Analysis
	Slide 24: Beyond Testing
	Slide 25: Program Instrumentation
	Slide 26: Example: LLVM Instrumentation
	Slide 27: Inserting program Probes
	Slide 28: Example: CoDe CoveraGe
	Slide 29: Example: CoDe CoveraGe
	Slide 30: Wrap-up

