EXERCISE #21

POINTS-TO ANALYSIS REVIEW

Write your name and answer the following on a piece of paper
Draw the points-to graph of the following snippet:

: int main ()

S

1
2
3:
4
5:
6 :
7
8 :
9:
10:
11:

Assignment Constraint

a=2&b a2{b}
a=b a=2b
a="*b a=2*b
*a=Db *a2b

Assignment Constraint

a=8&b a=2{b}
a=b a=2b
a="*b a=2*b
*a=Db *a2b

EXERCISE #21 SOLUTION
POINTS-TO ANALYSIS REVIEW

Quiz 2 on Monday

Review session: Friday at 6:30 PM, Location TBA

ADMINISTRIVIA
AND
ANNOUNCEMENTS

PROGRAM
INSTRUMENTATION

EECS 677: Software Security Evaluation

Drew Davidson

ANDERSEN’S ALGORITHM

REVIEW: LAST LECTURE

REACHABILITY FORMULATION

Step 1: Extract pointer-related operations

Step 2: Saturate points-to graph
Step 3: Compute node reachability

Assighment | Constraint Meaning
a=&b a 2 {b} loc(b) € pts(a)
a=b a2b pts(2) 2 pts(b)
a="%b a2*b vvepts(b). pts(a) 2 pts(v)
*a=b *a2b vvepts(a). pts(v) 2 pts(b)

ANDERSEN’S ALGORITHM: REACHABILITY

REVIEW: LAST LECTURE

Program Constraints
REACHABILITY FORMULATION
_ , . p =&a p 2 {a}
Step 1: List pointer-related operations o = &b p 2 {b}
Step 2: Saturate points-to graph m =&p; m_D {p}
Step 3: Compute node reachability = *mf r D_*m
q = &¢; q 2 {c}
m = &Q m 2 {q}
Assignment | Constraint Meaning Initial Final
a=&b a 2 {b} loc(b) € pts(a) pts()= {} ptS(O) ={}
a=b adb pts(a) 2 pts(b) pts(b) = {} pts(b) =
a=%*b a2*b vvepts(b). pts(a) 2 pts(v) pts(m) ={} pts(m) ={p,q}
pts(p) = {} pts(p) ={a, b}
%3 = b *32b vvepts(a). pt 2 pts(b
a a vepts(a). pts(v) 2 pts(b) pts(q) = {} pts(q) =
pts(r) = {} pts(r) ={aq,

POINTS TO AND TYPE SAFTEY

REVIEW: LAST LECTURE

A “FEATURE” OF THE ANALYSIS

Our points-to relationships are somewhat
contrived

Would a program ever actually
have both of these statements?

va=by PRACTICALITY

*O — *b;

PROGRAM
INSTRUMENTATION

EECS 677: Software Security Evaluation

Drew Davidson

>
/
<

LECTURE OUTLINE ‘\‘
S ’ : /\“‘\
* Steensgard’s Analysis O
* Static Analysis Underview (l“
* Program Instrumentation ‘ \y)
\"
I

OVERHEAD

ANDERSEN’S ANALYSIS

WORST CASE: CuBIC TIME

That’s not great!

Most of the time is spent in re-analyzing
constraints to get to a fixpoint

OPTIMIZATION: WEIAREOOBISYN ooints-to analysis
CYCLE ELIMINATION)) W

Detect and collapse SCCs in the

points-to relation

7// A MORE-EFFICIENT POINTS-TO

RETURN AGAIN TO OUR ANCIENT WISDOM

Simpler abstractions reach fixpoints faster

ANCIENT PROVERBS

FROM AROUND THE WORLD

A MORE-EFFICIENT POINTS-TO

STEENSGARD’S ANALYSIS

RETURN AGAIN TO OUR ANCIENT WISDOM

Simpler abstractions reach fixpoints faster

You can only point to 1 node
STEENGARD’S ANALYSIS gjf you need to point to > 1 node, merge the “pointees”
Limit the points-to graph nodes to have outdegree <=1

Simplifies many points-to constraints from subsets to equalities

Achieves near-linear performance

12

STEENGARD’S ALGORITHM

AN EFFICIENT OVER-APPROXIMATION

IN PRACTlCE\&qW

Step 1
List pointer-related operations
Step 2 equality

Induce set of gLlesEt constraints
Step 3
Solve system of constraints

REACHABILITY FORMULATION
Step 1

List pointer-related operations

Step 2 1-out

Saturate points-to graph

Step 3

Compute node reachability

Andersen’s
Assignment | Constraint Meaning
a=&b a 2 {b} loc(b) € pts(a)
a=b a2b pts(a) 2 pts(b)
a="%b a2*b vvepts(b). pts(a) 2 pts(v)
*a=b *adb vvepts(a). pts(v) 2 pts(b)
Steengaard’s
Assignment | Constraint Meaning
a=&b a 2 {b} loc(b) € pts(a)
a=b a=b pts(a) = pts(b)
a=%b a="%b vvepts(b). pts(a) = pts(v)
*a=b *a=b vvepts(a). pts(v) = pts(b)

%

EQUALITY CONSTRAINTS

STEENSGARD’S ANALYSIS

Constraint type | Assighment | Constraint Meaning
Base a=&b a 2 {b} loc(b) € pts(a)
Simple a=b a=b pts(a) = pts(b)
Complex a="%b a="b vvepts(b). pts(a) = pts(v)
Complex *a=b *fa=b vvepts(a). pts(v) = pts(b)

%

&a

g = &c

3

I

Qo
0

0 e

EQUALITY CONSTRAINTS

STEENSGARD’S @YSIS

% EQUALITY CONSTRAINTS

Steensgard’s

f %\ OO0 €
o a\ Lf G Q (oo, (o
OO, 0O dbhdE

THAT’S POINTS-TO!

STEENSGARD’S ANALYSIS

AN ADDITIONAL OVERLAY ON DATAFLOW

Dataflow facts also flow to aliases

When dereferencing a pointer, consider only pointed-to
objects

17

>
/
<

LECTURE OUTLINE ‘\‘
S ’ : /\“‘\
* Steensgard’s Analysis O
* Static Analysis Underview (l“
* Program Instrumentation ‘ \y)
\"
I

STATIC ANALYSIS READY TO GO!

STATIC ANALYSIS UNDERVIEW

DATAFLOW ANALYSIS CAN BE ADOPTED
FOR CHECKING A VARIETY OF SECURITY /
CORRECTNESS PROPERTIES

Forms the basis of a lot of static analysis!

Applicable for a variety of analysis goals

- Security leak detection
- Vulnerable program state detection

- Program understanding

/500D

19

STATIC ANALYSIS: BENEFITS

STATIC ANALYSIS UNDERVIEW

0&\(‘)W?MV?}

“THE ANALYST’S SIEVE”

Focus your attention on potential issues

NON-INTERACTIVE!

Can run in the background

Abstraction obviates need for input

20

LIMITS OF STATIC ANALYSIS

PROGRAM INSTRUMENTATION: BASIC IDEA

PRACTICAL ISSUES

Unsoundness of bug finding / incompleteness of
program verification

Scalability

Significant engineering effort

Findings may not be super actionable

UNTIL YOU SPREAD YOUR WINGS,
You’lt HAVE NO Ipea How FarR You CAN WALK.

21

>
/
<

LECTURE OUTLINE ‘\‘
S ’ : /\“‘\
* Steensgard’s Analysis O
* Static Analysis Underview (l“
* Program Instrumentation ‘ \y)
\"
I

REVISING DYNAMIC ANALYSIS

PROGRAM INSTRUMENTATION: BASIC IDEA

GIVING UP ON COMPLETE BUG-FINDING

- Finding bugs (even “low-hanging fruit”)
is useful!

BENEFITS

- Scalability
- Sound bug finding

Perhaps | treated you too harshly

23

BEYOND TESTING

PROGRAM INSTRUMENTATION: BASIC IDEA

LIMITATIONS OF “PLAIN” TESTING

- Property may not be immediately
observable from output alone

- The circumstances under which the
issue occurs may not be obvious

24

PROGRAM INSTRUMENTATION

PROGRAM INSTRUMENTATION: BASIC IDEA

WRITE CODE INTO THE EXECUTABLE
TO GATHER INFORMATION

: int main ()

{
foo ()
cout << “Got here!\n”;
bar () ;
cout << “Got here2\n”;
baz () ;
cout << “Got here3\n”;

Addresses both of the previous issues — can
report upon program state and even program
path

1

2
3:
4
5:
6:
7
8:
1:

1

EXAMPLE: LLVM INSTRUMENTATION

PROGRAM INSTRUMENTATION: BASIC IDEA

WRITE CODE INTO THE EXECUTABLE
TO GATHER INFORMATION

: int main ()

{
foo ()
cout << “Got here!\n”;
bar () ;
cout << “Got here2\n”;
baz () ;
cout << “Got here3\n”;

Addresses both of the previous issues — can
report upon program state and even program
path

1

2
3:
4
5:
6:
7
8:
1:

1

INSERTING PROGRAM PROBES

PROGRAM INSTRUMENTATION: BASIC IDEA

INSERT CHECKS / REPORTS INTO THE
ANALYSIS TARGET

Addresses both of the previous issues — can
report upon program state and even program
path

A NEW CONCERN — THE EFFICIENCY
OF THE (INSTRUMENTED) PROGRAM
Potential slowdown on each program path

OLD CONCERN — THE EFFICIENCY OF
PLACEMENT ANALYSIS

Somewhat limited by the information the
probes can report

27

% EXAMPLE: CODE COVERAGE
PROGRAM INSTRUMENTATION: BASIC IDEA

EXAMPLE: CODE COVERAGE

PROGRAM INSTRUMENTATION: BASIC IDEA

COUNTING HOW MANY TIMES CERTAIN
BEHAVIORS OF THE PROGRAM ARE
EXERCISED

Why is this useful? (Placing sanitizers)

THIS ACTUALLY TURNS OUT TO BE A
LITTLE BIT TRICKY!

Actually turns out to be a little bit tricky!

We'’ll describe some of the issues / solution as
per Ball and Larus, ‘96

29

WRAP-UP

WE’VE BEGUN TO CONSIDER A WAY TO
MOVE BEYOND STATIC ANALYSIS WHILE

USING OUR EXISTING TOOLS: PROGRAM
INSTRUMENTATION

	Slide 1: Exercise #21
	Slide 2: Exercise #21 Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Program Instrumentation
	Slide 5: Andersen’s Algorithm
	Slide 6: Andersen’s Algorithm: Reachability
	Slide 7: Points To and Type Saftey
	Slide 8: Program Instrumentation
	Slide 9: Lecture Outline
	Slide 10: Overhead
	Slide 11: A more-efficient Points-To
	Slide 12: A more-efficient Points-To
	Slide 13
	Slide 14: Equality Constraints
	Slide 15: Equality Constraints
	Slide 16: Equality Constraints
	Slide 17: That’s Points-To!
	Slide 18: Lecture Outline
	Slide 19: Static Analysis Ready to go!
	Slide 20: Static Analysis: Benefits
	Slide 21: Limits of Static Analysis
	Slide 22: Lecture Outline
	Slide 23: Revising Dynamic Analysis
	Slide 24: Beyond Testing
	Slide 25: Program Instrumentation
	Slide 26: Example: LLVM Instrumentation
	Slide 27: Inserting program Probes
	Slide 28: Example: CoDe CoveraGe
	Slide 29: Example: CoDe CoveraGe
	Slide 30: Wrap-up

