
EXERCISE 18

1

DEPENDENCE GRAPH REVIEW

Write your name and answer the following on a piece of paper

Give an example of a control-flow graph and indicate a block pair A,B such that A is an

immediate forward dominator of B but A does not dominate B

EXERCISE 18 SOLUTION

2

DEPENDENCE GRAPH REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

4

LAST TIME: CONTROL DEPENDENCE
REVIEW: LAST LECTURE

FOCUS THE ANALYSIS ON WHAT WE
CARE ABOUT

Control Dependence Graph (CDG)

– Shows what program statements most

immediately decide which others execute

5

DOM/FDOM INTUITION
REVIEW: LAST LECTURE

DOMINATION INTUITION

DOM(X,Y) – Paths to Y must go through X

FORWARD DOMINATION INTUITION

FDOM(X,Y) – Paths from X must go through Y

You cannot get to Y without going through X You cannot avoid Y after going through X

X “guards” Y X “is destined for” Y

6

IMMEDIACY
REVIEW: LAST LECTURE

DOMINATION INTUITION FORWARD DOMINATION INTUITION

Immediate Immediate

I
With no intervening node that

paths must go through from X

DOM(X,Y)– Paths to Y must go through X FDOM(X,Y) – Paths from X must go through Y

with no intervening node that

paths must go through to Y

X “is the closest guard of” Y

X’s “first guaranteed successor is” Y

I

7

CONTROL DEPENDENCE INTUITION
REVIEW: LAST LECTURE

Y CD X ⇔ there is a CFG-path from X to Y omitting IFDOM(X)

We’d like to express that getting to Y

depends on what happens in X

It’s possible to get from X to Y But it’s not guaranteed

CONTROL DEPENDENCE GRAPH

8

DEPENDENCE GRAPH REVIEW

BONUS EXERCISE

9

DEPENDENCE GRAPH REVIEW

Draw the Control Dependence Graph for the following program

BONUS EXERCISE

10

Draw the Control Dependence Graph of Basic Blocks for the following program

L2

L3

L6L4

entry

exit

Y CD X ⇔ there is a CFG-path from X to Y omitting IFDOM(X)

DEPENDENCE GRAPH REVIEW

BONUS EXERCISE

11

Draw the Control Dependence Graph of Basic Blocks for the following program

L2

L3

L6L4

L4 L6L3

entry

exitentry

exit

L2

IFDOM(entry, L2)

IFDOM(L2, L3)

IFDOM(L3, exit)

IFDOM(L4, exit)

IFDOM(L6, exit)

Y CD X ⇔ there is a CFG-path from X to Y omitting IFDOM(X)

DEPENDENCE GRAPH REVIEW

CFG Postdom tree

BONUS EXERCISE

12

DEPENDENCE GRAPH REVIEW

Draw the Control Dependence Graph of Basic Blocks for the following program

L2

L3

L6L4

entry

exit

IFDOM(entry, L2)

IFDOM(L2, L3)

IFDOM(L3, exit)

IFDOM(L4, exit)

IFDOM(L6, exit)

entry

L3

L4 L6

exitL2

L3 CD L2 ?
Y X

Path(X, Y) omitting IFDOM(X)

No!

L4 CD L3 ?
Y X

Yes!

Path(L2,L3) omitting IFDOM(L2)

Path(L2,L3) omitting L3

Path(X, Y) omitting IFDOM(X)

Path(L2,L3) omitting IFDOM(L2)

Path(L2,L3) omitting L3

Y CD X ⇔ there is a CFG-path from X to Y omitting IFDOM(X)

PROGRAM SLICING
EECS 677: Software Security Evaluation

Drew Davidson

OVERVIEW

EXTENDING THE DEPENDENCE RELATION
AND SHOWING ITS USE

14

LECTURE OUTLINE

• Data Dependence

• PDGs

• Slicing

16

DATA DEPENDENCE
DEPENDENCE RELATIONS

1: READ i;

2: if (i == 1)

3: PRINT “hi!”

 else

4: i = 1;

5: PRINT i;

6: end

Influence is more than control, it’s also what values

mattered to your behavior

Note here: a value at L1 might

have set a value at L5, but it’s

not control dependent!

L1

L2

L3 L4

L5

L6

17

THE DATA DEPENDENCE GRAPH
DEPENDENCE RELATIONS

Depiction of the reaching definitions of each statement

1: READ i;

2: if (i == 1)

3: PRINT “hi!”

 else

4: i = 1;

5: PRINT i;

6: end

Procedure

L1

L2

L3L4

L5 L6

DDG

18

THE DATA DEPENDENCE GRAPH
DEPENDENCE RELATIONS

1: READ i;

2: if (i == 1)

3: PRINT “hi!”

 else

4: i = 1;

5: PRINT i;

6: end

Depiction of the reaching definitions of each statement
L1

L2

L3 L4

L5

L6

L1

L2

L3L4

L5 L6

Procedure

CFG

DDG

{}

{}

{}

{i@5}

{i@5}

{}

{i@5}

{i@5}

{i@5}

{i@5,i@2}

{i@5,i@2}

{}

A use of i is found!

A def of i is found that reaches i@5

A use of i is found

A def of i is found that reaches i@5 or i@2

LECTURE OUTLINE

• Data Dependence

• PDGs

• Slicing

20

THE PROGRAM DEPENDENCE GRAPH
DEPENDENCE RELATIONS

1: READ i;

2: if (i == 1)

3: PRINT “hi!”

 else

4: i = 1;

5: PRINT i;

6: end

An overlay of the CDG + DDG = PDG

L1

L2

L3 L4

L5

L6

L1 L2

L3 L4

L5 L6

E

L1

L2

L3L4

L5

L6

L1

L2

L3 L4

L5 L6

E

CFG

CDG

DDG

PDG

LECTURE OUTLINE

• Data Dependence

• PDGs

• Slicing

22

THE “SUB-PROGRAM” CONCEPT
PROGRAM SLICING

BIG IDEA: IGNORE “IRRELEVANT”
FUNCTIONALITY FOR A PARTICULAR CASE

Control Dependence Graph (CDG)

– Shows what program statements depend on

each other

Program Dependence Graph (PDG)

– At minimum: A CDG enriched with data

dependence information

23

THE SLICE OF THE PROGRAM
PROGRAM SLICING

x = rand()

y = rand()

x = net_read()

if (y == 1){

 printf(“hello”);

}

if (x > 2){

 x = 2;

}

array[x] = 4;

FORWARD SLICE

Everything influenced by statement K

Forward reachability in the PDG

BACKWARDS SLICE

Everything that influences statement K

Backward reachability in the PDG

x = net_read()

if (x > 2){

 x = 2;

}

array[x] = 4;

y = rand()

if (y == 1){

 printf(“hello”);

}

Program
Forward Slice

Backward Slice

24

SLICE EXECUTION
PROGRAM SLICING

DO WE NEED OUR SLICED SUBPROGRAM TO
BE EXECUTABLE?

If so, we may need to include additional

instructions

25

OUTPUT DEPENDENCE
PROGRAM SLICING

DO WE NEED OUR SLICED SUBPROGRAM TO
PERFORM IDENTICALLY TO THE ORIGINAL?

If so, we’ll need additional output dependence

edges

26

SLICING SUMMARY
PROGRAM SLICING

STATIC SLICING HAS SOME PROMISING
APPLICATIONS

It’s not a one-size-fits-all scalability panacea

Any (sound) slicing is likely a benefit!

SOME APPLICATIONS BEYOND ANALYSIS

Automatic parallelization

Software metrics (how big of a change is this

refactor?)

27

ANALYSIS TOOLS
SWITCHING GEARS

WE’VE COVERED SEVERAL POPULAR
ANALYSIS TECHNIQUES FOR IMPERATIVE
PROGRAMMING

Let’s talk a bit about their tooling

28

LLVM: STATIC SLICING
ANALYSIS TOOLS

https://github.com/mchalupa/dg

NEXT TIME

DEALING WITH “REAL” PROGRAMS

- POINTERS

- (AFTER THAT) CLASSES

- (AFTER THAT) INTERPROCEDURAL
ANALYSIS

29

	Slide 1: Exercise 18
	Slide 2: Exercise 18 Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Last Time: Control Dependence
	Slide 5: DOM/FDOM Intuition
	Slide 6: Immediacy
	Slide 7: Control Dependence Intuition
	Slide 8: Control Dependence Graph
	Slide 9: Bonus Exercise
	Slide 10: Bonus Exercise
	Slide 11: Bonus Exercise
	Slide 12: Bonus Exercise
	Slide 13: Program Slicing
	Slide 14: Overview
	Slide 15: Lecture Outline
	Slide 16: Data Dependence
	Slide 17: The Data Dependence Graph
	Slide 18: The Data Dependence Graph
	Slide 19: Lecture Outline
	Slide 20: The Program Dependence Graph
	Slide 21: Lecture Outline
	Slide 22: The “SUB-Program” Concept
	Slide 23: The Slice of the Program
	Slide 24: Slice Execution
	Slide 25: Output dependence
	Slide 26: Slicing Summary
	Slide 27: Analysis Tools
	Slide 28: LLVM: Static Slicing
	Slide 29: Next Time

