EXERCISE 24

LLVM INSTRUMENTATION REVIEW
Write your name and answer the following on a piece of paper

By default, opt creates a binary-coded machine code output (<file>.bc). How is this file
translated back to a human-readble file (<file>.1l) ?

EXERCISE 24 SOLUTION
LLVM INSTRUMENTATION REVIEW

Paper review due Sunday at 11:59 PM

ADMINISTRIVIA
AND
ANNOUNCEMENTS

CLASS PROGRESS

SHOWING SOME APPLICATIONS OF
STATIC DATAFLOW

— DESCRIBED A PARTICULAR TYPE OF
EVASION AGAINST EXPLICIT
DATAFLOW: SIDE CHANNELS

— BEGAN TO CONSIDER WHAT WE
COULD DO ABOUT IT

LAST TIME: LLVM INSTRUMENTATION

REVIEW: LAST LECTURE

SHOWED THE CONCRETE STEPS TO USING
LLVM TO INJECT MEASUREMENT

Example: Inserted printf() calls before every binary
operation

Achievable via dynamically loading a .so into llvm...
— via the optimizer (opt —load-pass-plugin)

— via the compiler frontend (clang —fpass-plugin)

A new way of interacting with LLVM: as a library/framework

\@%"f

REFERENCE MONITORS

EECS 677: Software Security Evaluation

Drew Davidson

!.EC():V'Ie'rl::VE OUTLINE "‘
e [/);:‘
(<&
\V4
| TRY

BEYOND PASSIVE ANALYSIS

REFERENCE MONITORS: OVERVIEW

So FAR, OUR FOCUS HAS BEEN LARGELY m
ON DETECTING UNDESIRABLE BEHAVIOR
— That’s valuable!

— Ask developers to correct their own mistakes
— Empower users to forgo running bad software

LIMITATIONS OF ANALYSIS

REFERENCE MONITORS: OVERVIEW

DETECTION MIGHT NOT BE ENOUGH

— May be in a position where we can’t run the analysis

STATIC ANALYSIS
— False positives

— Scalability issues

DYNAMIC ANALYSIS

— False negatives

— Run time issues

A HANDS-ON ALTERNATIVE

REFERENCE MONITORS: OVERVIEW

KEEP BAD THINGS FROM HAPPENING DURING
SYSTEM EXECUTION

— Requires some sort of specification for “bad things”
— Requires some sort of preventative capabilities

10

PREVENTATIVE CAPABILITIES

REFERENCE MONITORS: OVERVIEW

SIMPLE FORM
Kill the program

DATAFLOW FORM

Sanitize the data

11

12

THE BIG IDEA

REFERENCE MONITORS: OVERVIEW

KEEP PROGRAMS ON THE “STRAIGHT AND NARROW”

- Articulate a policy for allowed behavior) ¢
- Keep a running record of security-relevant - o
behavior

- Prevent a violation of the policy =

SAFETY POLICIES

REFERENCE MONITORS: INSTANCES

EXECUTION OF A PROCESS AS A SEQUENCE OF STATES

Policy is a predicate on sequence prefix

Policy depends only on the past of a particular
execution — once violated, never “unviolates”
INCAPABLE OF HANDLING LIVENESS POLICIES

“If this server accepts a SYN, it will eventually
send a response”

13

!.EC():V'Ie'rl::VE OUTLINE "‘
e [/);:‘
(<&
\V4
| TRY

CONSIDER THE REACTIVE ADVERSARY

REFERENCE MONITORS: OVERVIEW

DEFINITION

Reactive Adversary: An adversary with the
capability to understand the defense
mechanism and an opportunity to avoid it

IF A DEFENSE CAN BE AVOIDED, IT
HARDLY MATTERS WHAT THE
ENFORCEMENT DOES

' FRANCE

: l I

Recall the history of the Maginot Line

15

SECURITY VS PRECISION

REFERENCE MONITORS: OVERVIEW

PROGRAM PROXIMITY

Close

Far

Inline reference monitor External reference monitor

16

REFERENCE MONITOR DESIGN

REFERENCE MONITORS: INSTANCES

KERNELIZED

Baked into the kernel
Coarse-grained
Secure / hard to subvert

WRAPPER

Specialized execution environment

INLINE

Rewrite the program / hook syscalls
Precise
No special privileges (easier to subvert)

PROPERTIES WE CARE ABOUT

REFERENCE MONITORS: INSTANCES

MEMORY SAFETY

e.g. Programs respect aggregate type sizes,
process boundaries, code v data

TYPE SAFETY

e.g. Functions and intrinsic operations have
arguments that adhere to the type system

CONTROL FLOW SAFETY

e.g. All control transfers are envisioned by the
original program

18

!.EC():V'Ie'rl::VE OUTLINE "‘
e [/);:‘
(<&
\V4
| TRY

KERNALIZED REFERENCE MONITOR

REFERENCE MONITORS: INSTANCES

SEMANTIC ABSTRACTION:

Collection of running processes and files

Processes are associated with users
Files have ACLs

OS ENFORCES VARIOUS SAFETY POLICIES

- File access
- Process space write

Simplest case: same policy for all processes of
the same user

20

EXAMPLE OS-LEVEL REFERENCE MONITORS

REFERENCE MONITORS: INSTANCES

APPARMOR

- L ,
Capability-based, per-program policies Q L In i >/
Restricts file access and system calls

EXAMPLE

deny
deny
deny
deny
deny
deny
deny
deny

@{HOME } /Documents/ rw,
@{HOME}/Private/ rw,
@{HOME}/Pictures/ rw,
@{HOME}/Videos/ rw,
@{HOME}/fake/ rw,
@{HOME}/.config/ rw,
@{HOME}/.ssh/ rw,
@{HOME}/.bashrc rw,

21

WRAPPER-LEVEL REFERENCE MONITOR

REFERENCE MONITORS: INSTANCES

JAVA SECURITY MANAGER

Each process is a logical fault domain

Ensure all memory references and jump is
within the process fault domain

java Program -Djava.security.manager -Djava.security.policy==~/Program.policy

22

INLINE REFERENCE MONITORS: SASI

REFERENCE MONITORS: INSTANCES

CORNELL PROJECT FOR INLINE POLICY ENFORCEMENT

Change the program to enforce “any” safety policy

Express allowed behavior as an FSM

Examples: —7 %-g,(ﬂ(
- No division by zero
- No network send after file read

IG«G

J)ﬁrlr‘/(){’; 0)

7f@b},{

23

SASI: COST

REFERENCE MONITORS: INSTANCES

ATTEMPTS TO MINIMIZE THE NUMBER OF CHECKS

Looking at every instruction is incredibly expensive

Example: only need to check divide-by-zero
before DIV instructions

24

CONSTRUCTING AN IRM

REFERENCE MONITORS: INSTANCES

LLVM-BASED INSTRUMENTATION

Assume source code (or at least IR availability)

Inject enforcement instructions at appropriate
points

LEVERAGING STATIC ANALYSIS

Only inject checks where there is the possibility
of failure

O w DN

if

}

: int main(int argc) {

(argc > 0) {
return 5 / argc;

25

SUMMARY

REFERENCE MONITORS

REFERENCE MONITOR INTUITION (FROM OUR PERSPECTIVE)

Dynamic program analyses that take action to alter the semantics of the program due to
a safety policy violation

Explores the semantic gap tradeoff: being close to the target may add specificity, but
may make the enforcement attackable

26

NEXT TIME: CFI

REFERENCE MONITORS: INSTANCES

USE®RM TO DETERMINE IF CODE VIOLATES ITS SUPERGRAPH

Why would we need to do this?

27

	Slide 1: Exercise 24
	Slide 2: Exercise 24 Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Class Progress
	Slide 5: Last Time: LLVM Instrumentation
	Slide 6: Reference Monitors
	Slide 7: Lecture Outline
	Slide 8: Beyond Passive Analysis
	Slide 9: Limitations of Analysis
	Slide 10: A Hands-on Alternative
	Slide 11: Preventative Capabilities
	Slide 12: The BiG Idea
	Slide 13: Safety Policies
	Slide 14: Lecture Outline
	Slide 15: Consider the Reactive Adversary
	Slide 16: Security vs Precision
	Slide 17: Reference Monitor Design
	Slide 18: Properties we care about
	Slide 19: Lecture Outline
	Slide 20: Kernalized reference Monitor
	Slide 21: Example OS-level Reference Monitors
	Slide 22: Wrapper-level Reference Monitor
	Slide 23: Inline Reference Monitors: SASI
	Slide 24: SASI: Cost
	Slide 25: Constructing an IRM
	Slide 26: Summary
	Slide 27: Next Time: CFI
	Slide 28: Wrap-up

