EXERCISE 24

LLVM INSTRUMENTATION REVIEW
Write your name and answer the following on a piece of paper

By default, opt creates a binary-coded machine code output (<file>.bc). How is this file
translated back to a human-readble file (<file>.1l) ?



EXERCISE 24 SOLUTION
LLVM INSTRUMENTATION REVIEW



Paper review due Sunday at 11:59 PM

ADMINISTRIVIA
AND
ANNOUNCEMENTS



CLASS PROGRESS

SHOWING SOME APPLICATIONS OF
STATIC DATAFLOW

— DESCRIBED A PARTICULAR TYPE OF
EVASION AGAINST EXPLICIT
DATAFLOW: SIDE CHANNELS

— BEGAN TO CONSIDER WHAT WE
COULD DO ABOUT IT



LAST TIME: LLVM INSTRUMENTATION

REVIEW: LAST LECTURE

SHOWED THE CONCRETE STEPS TO USING
LLVM TO INJECT MEASUREMENT

Example: Inserted printf() calls before every binary
operation

Achievable via dynamically loading a .so into llvm...
— via the optimizer (opt —load-pass-plugin)

— via the compiler frontend (clang —fpass-plugin)

A new way of interacting with LLVM: as a library/framework
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BEYOND PASSIVE ANALYSIS

REFERENCE MONITORS: OVERVIEW

So FAR, OUR FOCUS HAS BEEN LARGELY m
ON DETECTING UNDESIRABLE BEHAVIOR
— That’s valuable!

— Ask developers to correct their own mistakes
— Empower users to forgo running bad software




LIMITATIONS OF ANALYSIS

REFERENCE MONITORS: OVERVIEW

DETECTION MIGHT NOT BE ENOUGH

— May be in a position where we can’t run the analysis

STATIC ANALYSIS
— False positives

— Scalability issues

DYNAMIC ANALYSIS

— False negatives

— Run time issues



A HANDS-ON ALTERNATIVE

REFERENCE MONITORS: OVERVIEW

KEEP BAD THINGS FROM HAPPENING DURING
SYSTEM EXECUTION

— Requires some sort of specification for “bad things”
— Requires some sort of preventative capabilities
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PREVENTATIVE CAPABILITIES

REFERENCE MONITORS: OVERVIEW

SIMPLE FORM
Kill the program

DATAFLOW FORM

Sanitize the data
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THE BIG IDEA

REFERENCE MONITORS: OVERVIEW

KEEP PROGRAMS ON THE “STRAIGHT AND NARROW”

- Articulate a policy for allowed behavior ) ¢
- Keep a running record of security-relevant - o
behavior

- Prevent a violation of the policy =



SAFETY POLICIES

REFERENCE MONITORS: INSTANCES

EXECUTION OF A PROCESS AS A SEQUENCE OF STATES

Policy is a predicate on sequence prefix

Policy depends only on the past of a particular
execution — once violated, never “unviolates”
INCAPABLE OF HANDLING LIVENESS POLICIES

“If this server accepts a SYN, it will eventually
send a response”
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CONSIDER THE REACTIVE ADVERSARY

REFERENCE MONITORS: OVERVIEW

DEFINITION

Reactive Adversary: An adversary with the
capability to understand the defense
mechanism and an opportunity to avoid it

IF A DEFENSE CAN BE AVOIDED, IT
HARDLY MATTERS WHAT THE
ENFORCEMENT DOES

' FRANCE

: l I

Recall the history of the Maginot Line
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SECURITY VS PRECISION

REFERENCE MONITORS: OVERVIEW

PROGRAM PROXIMITY

Close

Far

Inline reference monitor External reference monitor
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REFERENCE MONITOR DESIGN

REFERENCE MONITORS: INSTANCES

KERNELIZED

Baked into the kernel
Coarse-grained
Secure / hard to subvert

WRAPPER

Specialized execution environment

INLINE

Rewrite the program / hook syscalls
Precise
No special privileges (easier to subvert)



PROPERTIES WE CARE ABOUT

REFERENCE MONITORS: INSTANCES

MEMORY SAFETY

e.g. Programs respect aggregate type sizes,
process boundaries, code v data

TYPE SAFETY

e.g. Functions and intrinsic operations have
arguments that adhere to the type system

CONTROL FLOW SAFETY

e.g. All control transfers are envisioned by the
original program
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KERNALIZED REFERENCE MONITOR

REFERENCE MONITORS: INSTANCES

SEMANTIC ABSTRACTION:

Collection of running processes and files

Processes are associated with users
Files have ACLs

OS ENFORCES VARIOUS SAFETY POLICIES

- File access
- Process space write

Simplest case: same policy for all processes of
the same user
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EXAMPLE OS-LEVEL REFERENCE MONITORS

REFERENCE MONITORS: INSTANCES

APPARMOR

- L ,
Capability-based, per-program policies Q L In i >/
Restricts file access and system calls

EXAMPLE

deny
deny
deny
deny
deny
deny
deny
deny

@{HOME } /Documents/ rw,
@{HOME}/Private/ rw,
@{HOME}/Pictures/ rw,
@{HOME}/Videos/ rw,
@{HOME}/fake/ rw,
@{HOME}/.config/ rw,
@{HOME}/.ssh/ rw,
@{HOME}/.bashrc rw,
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WRAPPER-LEVEL REFERENCE MONITOR

REFERENCE MONITORS: INSTANCES

JAVA SECURITY MANAGER

Each process is a logical fault domain

Ensure all memory references and jump is
within the process fault domain

java Program -Djava.security.manager -Djava.security.policy==~/Program.policy
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INLINE REFERENCE MONITORS: SASI

REFERENCE MONITORS: INSTANCES

CORNELL PROJECT FOR INLINE POLICY ENFORCEMENT

Change the program to enforce “any” safety policy

Express allowed behavior as an FSM

Examples: —7 %-g,(ﬂ(
- No division by zero
- No network send after file read

IG«G
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SASI: COST

REFERENCE MONITORS: INSTANCES

ATTEMPTS TO MINIMIZE THE NUMBER OF CHECKS

Looking at every instruction is incredibly expensive

Example: only need to check divide-by-zero
before DIV instructions
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CONSTRUCTING AN IRM

REFERENCE MONITORS: INSTANCES

LLVM-BASED INSTRUMENTATION

Assume source code (or at least IR availability)

Inject enforcement instructions at appropriate
points

LEVERAGING STATIC ANALYSIS

Only inject checks where there is the possibility
of failure

O w DN

if

}

: int main(int argc) {

(argc > 0) {
return 5 / argc;
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SUMMARY

REFERENCE MONITORS

REFERENCE MONITOR INTUITION (FROM OUR PERSPECTIVE)

Dynamic program analyses that take action to alter the semantics of the program due to
a safety policy violation

Explores the semantic gap tradeoff: being close to the target may add specificity, but
may make the enforcement attackable
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NEXT TIME: CFI

REFERENCE MONITORS: INSTANCES

USE®RM TO DETERMINE IF CODE VIOLATES ITS SUPERGRAPH

Why would we need to do this?
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