
EXERCISE 24

1

LLVM INSTRUMENTATION REVIEW

Write your name and answer the following on a piece of paper

By default, opt creates a binary-coded machine code output (<file>.bc). How is this file

translated back to a human-readble file (<file>.ll) ?

EXERCISE 24 SOLUTION

2

LLVM INSTRUMENTATION REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Paper review due Sunday at 11:59 PM

CLASS PROGRESS

SHOWING SOME APPLICATIONS OF
STATIC DATAFLOW

– DESCRIBED A PARTICULAR TYPE OF
EVASION AGAINST EXPLICIT
DATAFLOW: SIDE CHANNELS

– BEGAN TO CONSIDER WHAT WE
COULD DO ABOUT IT

4

5

LAST TIME: LLVM INSTRUMENTATION
REVIEW: LAST LECTURE

SHOWED THE CONCRETE STEPS TO USING
LLVM TO INJECT MEASUREMENT

Example: Inserted printf() calls before every binary

operation

Achievable via dynamically loading a .so into llvm…

– via the optimizer (opt –load-pass-plugin)

– via the compiler frontend (clang –fpass-plugin)

A new way of interacting with LLVM: as a library/framework

REFERENCE MONITORS
EECS 677: Software Security Evaluation

Drew Davidson

LECTURE OUTLINE

• Overview

• Details

• Instances

8

BEYOND PASSIVE ANALYSIS
REFERENCE MONITORS: OVERVIEW

SO FAR, OUR FOCUS HAS BEEN LARGELY
ON DETECTING UNDESIRABLE BEHAVIOR

– That’s valuable!

– Ask developers to correct their own mistakes

– Empower users to forgo running bad software

9

LIMITATIONS OF ANALYSIS
REFERENCE MONITORS: OVERVIEW

DETECTION MIGHT NOT BE ENOUGH

– False positives

– Scalability issues

DYNAMIC ANALYSIS

– False negatives

– Run time issues

STATIC ANALYSIS

– May be in a position where we can’t run the analysis

10

A HANDS-ON ALTERNATIVE
REFERENCE MONITORS: OVERVIEW

KEEP BAD THINGS FROM HAPPENING DURING
SYSTEM EXECUTION

– Requires some sort of specification for “bad things”

– Requires some sort of preventative capabilities

11

PREVENTATIVE CAPABILITIES
REFERENCE MONITORS: OVERVIEW

SIMPLE FORM

Kill the program

DATAFLOW FORM

Sanitize the data

12

THE BIG IDEA
REFERENCE MONITORS: OVERVIEW

KEEP PROGRAMS ON THE “STRAIGHT AND NARROW”

- Articulate a policy for allowed behavior

- Keep a running record of security-relevant

behavior

- Prevent a violation of the policy

13

SAFETY POLICIES
REFERENCE MONITORS: INSTANCES

EXECUTION OF A PROCESS AS A SEQUENCE OF STATES

Policy is a predicate on sequence prefix

Policy depends only on the past of a particular

execution – once violated, never “unviolates”

INCAPABLE OF HANDLING LIVENESS POLICIES

“If this server accepts a SYN, it will eventually

send a response”

LECTURE OUTLINE

• Overview

• Details

• Instances

15

CONSIDER THE REACTIVE ADVERSARY
REFERENCE MONITORS: OVERVIEW

DEFINITION

Reactive Adversary: An adversary with the

capability to understand the defense

mechanism and an opportunity to avoid it

IF A DEFENSE CAN BE AVOIDED, IT
HARDLY MATTERS WHAT THE
ENFORCEMENT DOES

Recall the history of the Maginot Line

16

SECURITY VS PRECISION
REFERENCE MONITORS: OVERVIEW

PROGRAM PROXIMITY

FarClose

Inline reference monitor External reference monitor

17

REFERENCE MONITOR DESIGN
REFERENCE MONITORS: INSTANCES

KERNELIZED

WRAPPER

INLINE

Baked into the kernel

Coarse-grained

Secure / hard to subvert

Specialized execution environment

Rewrite the program / hook syscalls

Precise

No special privileges (easier to subvert)

18

PROPERTIES WE CARE ABOUT
REFERENCE MONITORS: INSTANCES

MEMORY SAFETY

TYPE SAFETY

CONTROL FLOW SAFETY

e.g. Programs respect aggregate type sizes,

process boundaries, code v data

e.g. Functions and intrinsic operations have

arguments that adhere to the type system

e.g. All control transfers are envisioned by the

original program

LECTURE OUTLINE

• Overview

• Details

• Instances

20

KERNALIZED REFERENCE MONITOR
REFERENCE MONITORS: INSTANCES

SEMANTIC ABSTRACTION:

OS ENFORCES VARIOUS SAFETY POLICIES

Processes are associated with users

- File access

- Process space write

Simplest case: same policy for all processes of

the same user

Files have ACLs

Collection of running processes and files

21

EXAMPLE OS-LEVEL REFERENCE MONITORS
REFERENCE MONITORS: INSTANCES

APPARMOR

EXAMPLE
deny @{HOME}/Documents/ rw,

deny @{HOME}/Private/ rw,

deny @{HOME}/Pictures/ rw,

deny @{HOME}/Videos/ rw,

deny @{HOME}/fake/ rw,

deny @{HOME}/.config/ rw,

deny @{HOME}/.ssh/ rw,

deny @{HOME}/.bashrc rw,

Capability-based, per-program policies

Restricts file access and system calls

22

WRAPPER-LEVEL REFERENCE MONITOR
REFERENCE MONITORS: INSTANCES

JAVA SECURITY MANAGER

Each process is a logical fault domain

Ensure all memory references and jump is

within the process fault domain

java Program -Djava.security.manager -Djava.security.policy==~/Program.policy

23

INLINE REFERENCE MONITORS: SASI
REFERENCE MONITORS: INSTANCES

CORNELL PROJECT FOR INLINE POLICY ENFORCEMENT

Change the program to enforce “any” safety policy

Express allowed behavior as an FSM

Examples:

- No division by zero

- No network send after file read

24

SASI: COST
REFERENCE MONITORS: INSTANCES

ATTEMPTS TO MINIMIZE THE NUMBER OF CHECKS

Looking at every instruction is incredibly expensive

Example: only need to check divide-by-zero

before DIV instructions

25

CONSTRUCTING AN IRM
REFERENCE MONITORS: INSTANCES

LLVM-BASED INSTRUMENTATION

Assume source code (or at least IR availability)

Inject enforcement instructions at appropriate

points

LEVERAGING STATIC ANALYSIS

Only inject checks where there is the possibility

of failure

1: int main(int argc){

 2: if (argc > 0){

 3: return 5 / argc;

 4: }

 5: }

26

SUMMARY
REFERENCE MONITORS

REFERENCE MONITOR INTUITION (FROM OUR PERSPECTIVE)

Dynamic program analyses that take action to alter the semantics of the program due to

a safety policy violation

Explores the semantic gap tradeoff: being close to the target may add specificity, but

may make the enforcement attackable

27

NEXT TIME: CFI
REFERENCE MONITORS: INSTANCES

USE IRM TO DETERMINE IF CODE VIOLATES ITS SUPERGRAPH

Why would we need to do this?

WRAP-UP

	Slide 1: Exercise 24
	Slide 2: Exercise 24 Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Class Progress
	Slide 5: Last Time: LLVM Instrumentation
	Slide 6: Reference Monitors
	Slide 7: Lecture Outline
	Slide 8: Beyond Passive Analysis
	Slide 9: Limitations of Analysis
	Slide 10: A Hands-on Alternative
	Slide 11: Preventative Capabilities
	Slide 12: The BiG Idea
	Slide 13: Safety Policies
	Slide 14: Lecture Outline
	Slide 15: Consider the Reactive Adversary
	Slide 16: Security vs Precision
	Slide 17: Reference Monitor Design
	Slide 18: Properties we care about
	Slide 19: Lecture Outline
	Slide 20: Kernalized reference Monitor
	Slide 21: Example OS-level Reference Monitors
	Slide 22: Wrapper-level Reference Monitor
	Slide 23: Inline Reference Monitors: SASI
	Slide 24: SASI: Cost
	Slide 25: Constructing an IRM
	Slide 26: Summary
	Slide 27: Next Time: CFI
	Slide 28: Wrap-up

