
EXERCISE 26

1

LLVM INSTRUMENTATION REVIEW

Write your name and answer the following on a piece of paper

By default, opt creates a binary-coded machine code output (<file>.bc). How is this file

translated back to a human-readble file (<file>.ll) ?

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Videos to be uploaded

CLASS PROGRESS

SHOWING SOME APPLICATIONS OF
STATIC DATAFLOW

– DESCRIBED A PARTICULAR TYPE OF
EVASION AGAINST EXPLICIT
DATAFLOW: SIDE CHANNELS

– BEGAN TO CONSIDER WHAT WE
COULD DO ABOUT IT

3

4

LAST TIME: SIDE CHANNELS
REVIEW: LAST LECTURE

UNDETECTABLE VIA (TYPICAL) STATIC DATAFLOW

– General side-channel: using a predictable phenomenon

outside of the semantics of the program

– Covert channel: special instance of a side channel that is

used intentionally by the program

REFERENCE MONITORS
EECS 677: Software Security Evaluation

Drew Davidson

OVERVIEW

PREVENTING BAD STUFF FROM
HAPPENING IN A PROGRAM

6

LECTURE OUTLINE

• Overview

• Details

• Instances

8

LIMITATIONS OF ANALYSIS
REFERENCE MONITORS: OVERVIEW

SO FAR, OUR FOCUS HAS BEEN LARGELY
ON DETECTING UNDESIRABLE BEHAVIOR

– That’s valuable!

– Ask developers to correct their own mistakes

– Empower users to forgo running bad software

9

LIMITATIONS OF ANALYSIS
REFERENCE MONITORS: OVERVIEW

DETECTION MIGHT NOT BE ENOUGH

– False positives

– Scalability issues

DYNAMIC ANALYSIS

– False negatives

– Run time issues

STATIC ANALYSIS

– May be in a position where we can’t run the analysis

10

A HANDS-ON ALTERNATIVE
REFERENCE MONITORS: OVERVIEW

KEEP BAD THINGS FROM HAPPENING DURING
SYSTEM EXECUTION

– Requires some sort of specification for “bad things”

– Requires some sort of preventative capabilities

11

PREVENTATIVE CAPABILITIES
REFERENCE MONITORS: OVERVIEW

SIMPLE FORM

Kill the program

DATAFLOW FORM

Sanitize the data

12

THE BIG IDEA
REFERENCE MONITORS: OVERVIEW

KEEP PROGRAMS ON THE “STRAIGHT AND NARROW”

- Articulate a policy for allowed behavior

- Keep a running record of security-relevant

behavior

- Prevent a violation of the policy

13

SAFETY POLICIES
REFERENCE MONITORS: INSTANCES

EXECUTION OF A PROCESS AS A SEQUENCE OF STATES

Policy is a predicate on sequence prefix

Policy depends only on the past of a particular

execution – once violated, never “unviolates”

INCAPABLE OF HANDLING LIVENESS POLICIES

“If this server accepts a SYN, it will eventually

send a response”

LECTURE OUTLINE

• Overview

• Details

• Instances

15

CONSIDER THE REACTIVE ADVERSARY
REFERENCE MONITORS: OVERVIEW

DEFINITION

Reactive Adversary: An adversary with the

capability to understand the defense

mechanism and an opportunity to avoid it

IF A DEFENSE CAN BE AVOIDED IT
HARDLY MATTERS WHAT THE
ENFORCEMENT DOES

Recall the history of the Maginot Line

16

SECURITY VS PRECISION
REFERENCE MONITORS: OVERVIEW

PROGRAM PROXIMITY

FarClose

Inline reference monitor External reference monitor

17

REFERENCE MONITOR DESIGN
REFERENCE MONITORS: INSTANCES

KERNELIZED

WRAPPER

INLINE

Baked into the kernel: coarse, secure/hard to avoid

Specialized execution environment

Rewrite the program/hook syscalls: precise, less secure/easier to avoid

18

PROPERTIES WE CARE ABOUT
REFERENCE MONITORS: INSTANCES

MEMORY SAFETY

TYPE SAFETY

CONTROL FLOW SAFETY

e.g. Programs respect aggregate type sizes,

process boundaries, code v data

e.g. Functions and intrinsic operations have

arguments that adhere to the type system

e.g. All control transfers are envisioned by the

original program

LECTURE OUTLINE

• Overview

• Details

• Instances

20

OS AS REFERENCE MONITOR
REFERENCE MONITORS: INSTANCES

COLLECTION OF RUNNING PROCESSES AND FILES

OS ENFORCES VARIOUS SAFETY POLICIES

Processes are associated with users

- File access

- Process space write

Same policy for all processes of the same user

Files have ACLs

21

SOFTWARE FAULT ISOLATION (SFI)
REFERENCE MONITORS: INSTANCES

ISOLATE PROCESS FAULTS ON SHARED HARDWARE

Each process is a logical fault domain

Ensure all memory references and jump is

within the process fault domain

22

INLINE REFERENCE MONITORS: SASI
REFERENCE MONITORS: INSTANCES

CORNELL PROJECT FOR INLINE POLICY ENFORCEMENT

Change the program to enforce “any” safety policy

Express allowed behavior as an FSM

Examples:

- No division by zero

- No network send after file read

23

SASI: COST
REFERENCE MONITORS: INSTANCES

ATTEMPTS TO MINIMIZE THE NUMBER OF CHECKS

Looking at every instruction is incredibly expensive

Example: only need to check divide-by-zero

before DIV instructions

24

CONTROL FLOW INTEGRITY: CFI
REFERENCE MONITORS: INSTANCES

ENSURE THE PROGRAM CONTROL FLOW IS ALLOWED BY THE
CFG

In a sense, the policy is the control-flow graph

Why would we need to do this?

WRAP-UP

	Slide 1: Exercise 26
	Slide 2: Administrivia and Announcements
	Slide 3: Class Progress
	Slide 4: Last Time: SIDE Channels
	Slide 5: Reference Monitors
	Slide 6: Overview
	Slide 7: Lecture Outline
	Slide 8: Limitations of Analysis
	Slide 9: Limitations of Analysis
	Slide 10: A Hands-on Alternative
	Slide 11: Preventative Capabilities
	Slide 12: The BiG Idea
	Slide 13: Safety Policies
	Slide 14: Lecture Outline
	Slide 15: Consider the Reactive Adversary
	Slide 16: Security vs Precision
	Slide 17: Reference Monitor Design
	Slide 18: Properties we care about
	Slide 19: Lecture Outline
	Slide 20: OS as reference Monitor
	Slide 21: Software Fault Isolation (Sfi)
	Slide 22: Inline Reference Monitors: SASI
	Slide 23: SASI: Cost
	Slide 24: Control Flow Integrity: CFI
	Slide 25: Wrap-up

