
EXERCISE #32
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BOOLEAN SATISFIABILITY REVIEW

Write your name and answer the following on a piece of paper

Apply DPLL to determine if there is a satisfying assignment to the following Boolean 

formula

𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐 ∧ ¬𝑏 ∨ ¬𝑐 ∧ ¬𝑑 ∨ ¬𝑐 ∧ ¬𝑑 ∨ ¬𝑏 ∧ 𝑐



EXERCISE #32 SOLUTION
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BOOLEAN SATISFIABILITY REVIEW

Write your name and answer the following on a piece of paper

Apply DPLL to determine if there is a satisfying assignment to the following Boolean 

formula

𝑎 ∨ 𝑏 ∧ 𝑎 ∨ 𝑐 ∧ ¬𝑏 ∨ ¬𝑐 ∧ ¬𝑑 ∨ ¬𝑐 ∧ ¬𝑑 ∨ ¬𝑏 ∧ 𝑐



ADMINISTRIVIA
AND 
ANNOUNCEMENTS



SMT SOLVING
EECS 677: Software Security Evaluation

Drew Davidson
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PREVIOUSLY : SATISFIABILITY
OUTLINE / OVERVIEW

THE MAGIC THAT MADE SYMBOLIC 
EXECUTION WORK WAS THE SOLVER

A COMPUTATIONALLY HARD PROBLEM

Famously NP-complete (the progenitor of that 

complexity class!) 

Obvious exponential loose upper bound (brute 

force)
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THIS LECTURE
SMT SOLVING

SATISFIABILITY BEYOND SIMPLE BOOLEAN 
EXPRESSIONS

Gets us (closer) to the real programs that we want to 

analyze

KEY PRINCIPLES

Considering individual theory solvers

Formulating constraints modularize a concern to a theory
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THEORY SOLVERS
SMT SOLVING

SOME EXAMPLE THEORIES

Theory of equality on uninterpreted (mathematical) 

functions

Theory of linear integer arithmetic

Theory of arrays

Theory of strings

Theory of bitvectors

Often possible (+ convenient / necessary)

to abstract away the actual behavior of 

a function
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THEORY SIGNATURES
SMT SOLVING

The set of (non-logical) symbols and their meanings 

defined by that theory

Example: Theory of linear integer arithmetic:

(integer constants, literals,+,−, ×,÷,≤, ≥, <, >, =)
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HOW TO (NOT) USE THEORIES
SMT SOLVING

SHORTCUTS: THE NAME OF THE GAME

We’d really like to not invoke the theory solvers as much as 

possible, and we really want theories to not intermingle

To this end, we’ll try to get our formula (i.e. path 

constraint) to separate concerns into theories
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DPLL(T)
SMT SOLVING

Linear Solver: contradiction!

x ≥ 0 ∧ y = x + 1 ∧ (y > 2 ∨ y < 1 )

p1 ∧ p2 ∧ (p3 ∨ p4 )

p1:true

p2:true

p3:false

p4: true

DPLL

Abstract all non-logical clauses

Add information and start over

p1 ∧ p2 ∧ (p3 ∨ p4) ∧ (¬p1 ∨ ¬p2 ∨ ¬p3)

“Strategize” about which constraints to solve 

using DPLL

- Abstract non-logical clauses

Note: still need to run the theory solvers to discard 

contradiction in the theories

Example

- Reason about a set of “sufficient” set of sub-

formulae to satisfy
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SEPARATING CONCERNS
SMT SOLVING

Occasionally a clause will mix multiple theories.

Logical symbols 

– Parentheses: (, )

– Propositional connectives: ∨, ∧, ¬, →, 

– Variables: v1, v2, . . .

– Quantifiers: ∀, ∃
Non-logical symbols

– Equality: =

– Functions: +, -, %, bit-wise &, f(), concat, …

– Predicates: ·, is_substring, …

– Constant symbols: 0, 1.0, null`

Goal: break down the constraint system to match our core (logical) theory at the top level, 

with individual clauses potentially in our theory signatures

That’s bad! It means that none of the solvers can apply
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NELSON-OPPEN
SMT SOLVING

Put the formula into separated form (each clause belongs entirely in a theory signature)

A METHOD FOR WORKING ACROSS THEORIES

Big idea:

Apply axioms of the theory to create new clauses

Communicate information between theories across equality
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EXAMPLE
SMT SOLVING

Credit: this example due to Oliveras and Rodriguez-Carbonell, additional work by Aldrich

f (f (x) − f (y)) = a

∧
f (0) = a + 2

∧
x = y Signature of EUF 

- The predicate = 

- All literal and function symbols

Signature of linear integer arithmetic:

- integer constants, literals

- +,−, ×,÷,≤, ≥, <, >, =
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EXAMPLE
SMT SOLVING

f (f (x) − f (y)) = a

∧
f (0) = a + 2

∧
x = y

Basic idea: replace operations with fresh propositional variables and

f (e1) = a

∧
e1 = f(x) – f(y)

∧
f (0) = a + 2

∧
x = y

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (0) = a + 2

∧
x = y

add the operation as a new constraint on the abstract variable



15

EXAMPLE
SMT SOLVING

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (0) = a + 2

∧
x = y

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = a + 2

∧
e4 = 0

∧
x = y

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y



16

EXAMPLE
SMT SOLVING

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

Theory of EUF

Theory of EUF

Theory of EUF

Theory of EUF

Theory of integer arithmeticANDTheory of EUF

Theory of integer arithmetic

Theory of integer arithmetic

Theory of integer arithmetic
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0

∧
e1 = e4
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0

∧
e1 = e4

∧
f(0) = a



23

EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0

∧
e1 = e4

∧
f(0) = a
∧
f(0) = e5
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EXAMPLE
SMT SOLVING

Some EUF Axioms

Congruence:

𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑓(𝑦)

Symmetry

𝑥 =  𝑦 ⇒ 𝑦 = 𝑥

Transitivity:

𝑥 =  𝑦 ∧ 𝑦 = 𝑧 ⇒ 𝑥 = 𝑧

…

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0

∧
e1 = e4

∧
f(0) = a
∧
f(0) = e5

∧
e5 = a Arithmetic

Contradiction
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“CONVENIENT” EQUALITIES
SMT SOLVING

f (e1) = a

∧
e1 = e2 – e3

∧
e2 = f(x)

∧
e3 = f(y)

∧
f (e4) = e5

∧
e4 = 0

∧
e5 = a + 2

∧
x = y

∧
f(x) = f(y)

∧
e2 = e3

∧
e2 - e3 = 0

∧
e1 = 0

∧
e1 = e4

∧
f(0) = a
∧
f(0) = e5

∧
e5 = a

The lynchpin of our success was the existence of some

useful equalities. What if they aren’t in the original 

constraints?

Case split!

Can add logical predicates for all possible equalities…

(e1 = e2 ∨ e1 ≠ e2) 

∧ 

(e2 = e3 ∨ e2 ≠ e3) 

∧ 

(e1 = e3 ∨ e1 ≠ e3) 

∧ 

...

and start making guesses
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ARITHMETIC CONSTRAINTS
SMT SOLVING

We kinda danced around how the arithmetic solver works

Basic answer: Linear Algebra. 

Also, something something Linear Optimization and the simplex algorithm
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WRAP-UP
SMT SOLVERS

HOPEFULLY I’VE CONVINCED YOU THAT SOLVERS CAN BE IMPLEMENTED 

Not strictly magic, but they do employ some very clever techniques
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