EXERCISE 32

BOOLEAN SATISFIABILITY REVIEW
Write your name and answer the following on a piece of paper

Apply DPLL to determine if there is a satisfying assignment to the following Boolean
formula

(avb)A(a Vc)A(=b Vac)A(=d Vac)A(=d vV =b) A(c)



EXERCISE 32 SOLUTION
BOOLEAN SATISFIABILITY REVIEW
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EXERCISE 32 SOLUTION

BOOLEAN SATISFIABILITY REVIEW

(avb)A(a Vc)A(=b Vac)A(=d V—ac)A(=d VAb) A(c)

function DPLL()
if ¢ = true then
return true
end if
if ¢ contains a false clause then
return false
end if
for all unit clauses | in ¢ do
@ < UNIT-PROPAGATE(I, )
end for
for all literals | occurring pure in ¢ do
@ < PURE-LITERAL-ASSIGN(I, ¢)
end for
| < CHOOSE-LITERAL(¢)
return DPLL(¢p A1) V DPLL(¢p A =)
end function
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WHERE WE’RE AT

TOOLS / TECHNIQUES UNDERLYING
I SYMBOLIC EXECUTION



PREVIOUSLY : SATISFIABILITY

OUTLINE / OVERVIEW

THE MAGIC THAT MADE SYMBOLIC

EXECUTION WORK WAS THE SOLVER gAT'g,FAC‘r'ON

A COMPUTATIONALLY HARD PROBLEM

Famously NP-complete (the progenitor of that
complexity class!)

Obvious exponential loose upper bound (brute
force)




THIS LECTURE

SMT SOLVING

SATISFIABILITY BEYOND SIMPLE BOOLEAN
EXPRESSIONS

Gets us (closer) to the real programs that we want to
analyze

KEY PRINCIPLES

Individual theory solvers

Formulating constraints modularize a concern to a theory




THEORY SOLVERS

SMT SOLVING

SOME EXAMPLE THEORIES
Theory of linear integer arithmetic
Theory of bitvectors

Theory of arrays

Theory of strings

Theory of equality on uninterpreted (mathematical)
functions

Often possible (+ convenient / necessary)
to abstract away the actual behavior of
a function

10
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THEORY SIGNATURES

SMT SOLVING

The set of (non-logical) symbols and their meanings
defined by that theory L R PR vy A
T Ll Dt ,
By (lufl

Example: Theory of linear integer arithmetic: Wi QMT presal f

(0,1,+,—,<) interpreted over Z @ e Lw]r,_ it %7
SRR I

Once we have a set of signatures, we’ll try to get our - &WQ n ‘%@/ I

formula (i.e. path constraint) to separate concerns into
theories



SEPARATING CONCERNS

SMT SOLVING

Note: we will only deal with constraints in Quantifier-Free First-Order Logic

Goal: break down the constraint system to match our core (logical) theory at the top level,
with individual clauses potentially in our theory signatures

Logical symbols
— Parentheses: (, )
— Propositional connectives: V, A, =, —, <>

— Variables: vl1, v2, ...
nantifiaree 1

—Quantifiers: ¥ 3
Non-logical symbols

— Equality: =

— Functions: +, -, %, bit-wise &, f(), concat, ...
— Predicates: €is_substring, ...

— Constant symbols: 0, 1.0, null’



EXAMPLE

SMT SOLVING

Credit: this example due to Oliveras and Rodriguez-Carbonell, additional work by Aldrich



EXAMPLE

SMT SOLVING

Step 1: Nelson-Oppen procedure to separate theories

f(f(x)-f(y)=a fley) =a
N N
f(0)=a+2 e, = f(x) - f(y)
A AT
X =Yy f(0O)=a+2
N
X =y



EXAMPLE

SMT SOLVING

Step 1: Nelson-Oppen procedure to separate theories

f(e;) =a f(e;)=a
AN A
e, =e,—e, e,=e,—e,
AN A
e, = f(x) e, = f(x)
A A
€3 = f(y) €3= f(y)
A A
;LO)=G+2 j\(ej)=gi2
X =Yy €,=0

AN

X =y



EXAMPLE

SMT SOLVING
Theory of EUF
Theory of integer arithmetic
Theory of EUF
Theory of EUF

Theory of EUF
Theory of integer arithmetic

Theory of integer arithmetic

Theory of EUF AND Theory of integer arithmetic



EXAMPLE

SMT SOLVING

Some EUF Axioms
Congruence:

x=y=fx)=f)

Symmetry
X=y=>y=Xx

Transitivity:
X=YANy=zZ=>x=1Z
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f(e;)=a

AN A

el_ 62 e3 e2 e3=
A N

e,= f(x) e, =0
A N

e;= f(y) e, =€
N

f(e,) =ec

N\

e,=0

|_.l—/\

N\

e;=a+2

N\

X=Yy

N\

f(x) = f(y)

N
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f(e;)=a

N\ N\
e,=e, - €, €~ &=
I\ A\

e, = f(x) e, =0

A N

e, = f(y) €.=&
A A

f(e,) = es f(0) = a
A A

e,=0 f(0) = e
N\

e,=a+2

A

X=y

N\

f(x) = f(y)

A}
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EXAMPLE

SMT SOLVING

f(e;)=a

N\ N\
e,=e, - €, €~ &=
JA N\

e, = f(x) e, =0

A N

e;= f(y) e, =€
A A

f(e,) = eg f(0) = @
N\ N

e,=0 f(0) = e
A JAY

e5 =a+2 65 =d

N\

X=y

N\

f(x) = f(y)

N

Arithmetic

Contradiction

Some EUF Axioms
Congruence:

x=y=fx)=f)

Symmetry
X=y=>y=Xx

Transitivity:
X=yYyNANy=zZ=>Xx=1Z



“CONVENIENT” EQUALITIES

SMT SOLVING

The lynchpin of our success was the existence of some
useful equalities. What if they aren’t in the original
constraints?

Case split!
Can add logical predicates for all possible equalities...

—

e, =e,Ve *e,)
e2 =e3Ve2#e3)

el =e3 Vel #e3)

> o > o S

and start making guesses



“CONVENIENT” EQUALITIES

SMT SOLVING

—| oL&f/Q Q The lynchpin of our success was the existence of some
X=Z0Ay=x+1A(y>2Vy<1) useful equalities. What if they aren’t in the original

—— —
Abstract all non-logical clauses

constraints?

Case split!

PLAP2A(p3Vp4) Can add logical predicates for all possible equalities...
DPLL (e, =e,Ve #e,)
pl:true A
02:true (e2 =e3Ve2 # e3)
p3:false A
04 true (el =e3 Vel # e3)

AN
Linear Solver: contradiction!
Add information and start over and start making smart guesses

PLAP2A (P3V p4d) A (=plV =p2V -p3)



ARITHMETIC CONSTRAINTS

SMT SOLVING

We kinda danced around how the arithmetic solver works
Basic answer: Linear Algebra.

Also, something something Linear Optimization and the simplex algorithm



SOMETHING SOMETHING LINEAR

OPTIMIZATION AND THE SIMPLEX ALGORITHM

SMT SOLVING

Overview [edi]
Further information: Linear programming

The simplex algorithm operates on linear programs in the canonical form

maximize ¢ x

subjectto Ax < bandx >0

withc = (cy, ..., ¢,) the coefficients of the objective function, ()T is the matrix transpose, and
x = (21, ..., T,) are the variables of the problem, A is a pxn matrix, and b = (b, ..., b,).
There is a straightforward process to convert any linear program into one in standard form, so

using this form of linear programs results in no loss of generality.

In geometric terms, the feasible region defined by all values of x such that Ax < b and
Vi, x; > 0is a (possibly unbounded) convex polytope. An extreme point or vertex of this polytope

is known as basic feasible solution (BFS).

28
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WRAP-UP

SMT SOLVERS

HOPEFULLY I’VE CONVINCED YOU THAT SOLVERS CAN BE IMPLEMENTED

Not strictly magic, but they do employ some very clever techniques
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