
SSDLC
EECS 677: Software Security Evaluation

Drew Davidson

2

LAST TIME: SMT SOLVING
REVIEW: LAST LECTURE

BEYOND PURE BOOLEAN REASONING

Theories allow reasoning about a particular set of

constants, variables, and operations

Sufficient to capture and reason about many of the

constraints generated by the symbolic execution

engine

True False

3

SMT SOLVING – DPLL(T)
REVIEW: LAST LECTURE

CREATE A SATISFYING ASSIGNMENT OF VALUES
TO VARIABLES IN CNF FORMULA CLAUSES

Fit clauses into the signature of various theories

A ⋀ (B ⋁ C) ⋀ (¬D)

Where A is x > 7

B is f(x) = 9

C is y = 9

D is z = 4

May be necessary to re-arranging the formula to

separate theories

i.e. replace subformulae with new propositional

variables and constraints to separate theories

(Nelson-Oppen)

DPLL to determine which clauses to investigate

Create a solution for the high-level clauses

Double check that solution is consistent with

theory solvers

If not, block that solution and try again

4

SAYING GOODBYE TO SMT
REVIEW: LAST LECTURE

WE ONLY SCRATCHED THE SURFACE OF
SMT SOLVING

Lots of clever techniques / optimizations in each

theory

Linear integer arithmetic – use the first phase of

the two-phase simplex algorithm
us

SMT

EUF – apply congruence and transitivity to search

for contradictions

Beyond the scope of my ambitions for this class

For much more depth: https://www.decision-procedures.org/

https://www.decision-procedures.org/

TURNING THE PAGE TO A NEW
CHAPTER OF THIS CLASS

MY GOAL IS TO PROVIDE YOU A SENSE OF
THE CHALLENGES AND SOLUTIONS FOR
ENGINEERING SECURE SOFTWARE

- TOOLS

- TECHNIQUES

- PROCESSES

5

Consider the humans

LECTURE OUTLINE

• Human Factors of Security

• Security as Process

• The Secure Software

Development Lifecycle

7

SECURING SOFTWARE IS HARD!
HUMAN FACTORS OF SECURITY

SURPRISING THREAT MODELS

SECURITY-DEFICIENT TOOLING

8

SOFTWARE: A PATCHWORK OF MANY HANDS
SECURE SOFTWARE ENGINEERING

MODERN SOFTWARE PROJECTS INVOLVE
TEAMS OF PROGRAMMERS

Introducing automated analysis and good

development practices may win some battles

Hardening software means developing a

commitment and understanding of secure

development

BAD NEWS: PEOPLE ARE COMPLICATED

I hope to convince you to think about the problems

that you’ll see, place value on security

9

BOLT-ON SECURITY
LIFECYCLES

ATTEMPTING TO RETROFIT A SECURITY
SOLUTION ONTO A LEGACY SYSTEM

Sometimes necessary

Ideally avoided

10

VULNERABILITIES IN THE WILD
HUMAN FACTORS OF SECURITY

11

VULNERABILITIES IN THE WILD
HUMAN FACTORS OF SECURITY

LECTURE OUTLINE

• Human Factors of Security

• Security as Process

• The Secure Software

Development Lifecycle

13

PROCESS IS PROGRESS
SECURITY AS PROCESS

14

CORPORATE SNAKE OIL
SECURITY AS PROCESS

LIFECYCLES

15

16

SECURITY VS USABILITY
SECURITY AS PROCESS

A FUNDAMENTAL TENSION

Occurs within the implementation of software,

occurs within the processes guiding software

development

CONSIDER WHAT WE OWE USERS

Negative externalities

LECTURE OUTLINE

• Human Factors of Security

• Security as Process

• The Secure Software

Development Lifecycle

18

THE “REGULAR” SDLC
LIFECYCLES

SOFTWARE DEVELOPMENT LIFE CYCLE

– Requirement analysis

– Design

– Development

– Testing and verification

– Deployment

– Maintenance and evolution

The circle of (software) life

19

AGILE DEVELOPMENT
SDLC: LIFECYCLES

20

RISK ASSESSMENT AND THREAT MODELS
THE SSDLC COMPONENTS

COMPANION TO REQUIREMENT PHASE

Functional requirement: User must verify their own

contact information

Security consideration: Mechanism misuse

- Users may attempt to access the contact

information of others

- Users may attempt to subvert the verification

mechanism for harassment

21

SECURITY DESIGN REVIEW
THE SSDLC COMPONENTS

COMPANION TO THE DESIGN PHASE

Functional requirement: Page should retrieve user’s

name, email, etc. from customer_info table in

database

Security concern: Verify that user has a valid

session token before retrieving information from

database

CONSIDER SECURITY DESIGN PRINCIPLES

Principle of least privilege: Do entities in the

system have exactly the privileges they need?

Cancel my account

Destroy the database

Bad design for a button panel

22

(AUTOMATED) CODE ANALYSIS
THE SSDLC COMPONENTS

COMPANION TO DEVELOPMENT

Apply best practices

- Accessing databases via read-only

parameterized queries

- Validating user queries before processing them

- Chaos Engineering

Secure programming

- Assume a function might be misused

- Check arguments for reasonable values

- Canonicalize data

23

SECURITY TESTING AND CODE REVIEW
THE SSDLC COMPONENTS

COMPANION TO VERIFICATION

Ensure proper use of APIs

- Crypto library invocations

- Holistic audits

Test the test suite:

- Evaluate the coverage of your suite

- Ensure treatment of critical functionality

Value automation:

 - Repeatability / reproducibility

- Static analysis!

- Monkey testing

24

SECURITY ASSESSMENT AND CONFIGURATION
THE SSDLC COMPONENTS

COMPANION TO MAINTENANCE
AND EVOLUTION

– Logging – Capture the behavior of the system

(expected AND unexpected)

– Metrics – Articulate needs of the system,

measure expectations against reality

– Auditing – Periodic retrospective analysis over

codebase and configuration

WRAP-UP

• Human Factors of Security

• Security as Process

• The Secure Software

Development Lifecycle

	Slide 1: SSDLC
	Slide 2: Last Time: SMT Solving
	Slide 3: SMT Solving – DPLL(T)
	Slide 4: Saying goodbye To SMT
	Slide 5: Turning the page to a new chapter of this class
	Slide 6: Lecture Outline
	Slide 7: Securing software is hard!
	Slide 8: Software: A patchwork of many hands
	Slide 9: Bolt-on security
	Slide 10: Vulnerabilities in the WilD
	Slide 11: Vulnerabilities in the WilD
	Slide 12: Lecture Outline
	Slide 13: Process is Progress
	Slide 14: Corporate Snake Oil
	Slide 15
	Slide 16: Security vs Usability
	Slide 17: Lecture Outline
	Slide 18: The “Regular” SDLC
	Slide 19: Agile Development
	Slide 20: Risk Assessment and threat models
	Slide 21: Security Design Review
	Slide 22: (Automated) Code Analysis
	Slide 23: Security Testing And Code Review
	Slide 24: Security Assessment And Configuration
	Slide 25: Wrap-up

