
EXERCISE 30

1

CONCOLIC EXECUTION REVIEW

What is the benefit of concolic execution over symbolic execution? How does it

compare in terms of soundness / completeness of vulnerability finding?

EXERCISE 30 SOLUTION

2

CONCOLIC EXECUTION REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Quiz 3 next Friday

BOOLEAN
SATISFIABILITY
EECS 677: Software Security Evaluation

Drew Davidson

WHERE WE’RE AT

TOOLS / TECHNIQUES UNDERLYING
SYMBOLIC EXECUTION

5

6

PREVIOUSLY: ENHANCING SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

GENERATING TEST CASES

PRIORITIZING STATES IN THE SYMBOLIC
EXECUTION TREE

PRUNING DUPLICATE STATES

CONCRETIZING (SOME) INPUT TO MAKE
PROGRESS

7

THIS TIME: SATISFIABILITY
OUTLINE / OVERVIEW

THE MAGIC THAT MADE SYMBOLIC
EXECUTION WORK WAS THE SOLVER

Determines if a path constraint is feasible

Induces a test case that satisfies the path

constraint

Allows for consistent concretization

8

BOOLEAN SATISFIABILITY
SAT AND SMT

AT THE ROOT OF THE SOLVER IS A MECHANISM
FOR SOLVING A HARD PROBLEM:

Given a Boolean expression, provide a satisfying

assignment to its variables or indicate no such assignment

is possible

B ∧ 𝐴

B ∨ 𝐴

¬𝐴 ∧ 𝐴

The search for a solution

requires a lot of computation

Search scales rapidly with

the size of the problem

Constant time

Linear time

n log n time

polynomial time

Exponential time

B = 1, A = 1

B = 0, A = 1

B = 1, A = 0

B = 1, A = 1

No solution

9

NP
SAT AND SMT

THE CLASS OF PROBLEMS WHERE…

A solution can be generated in polynomial time by a

nondeterministic Turing machine

A solution can be verified in polynomial time by a

deterministic Turing machine

10

NP-COMPLETENESS
SAT AND SMT

THE CLASS OF PROBLEMS WHERE…

The “most difficult problems in NP”

A solution could be used as a solver for any problem in NP

SAT is the canonical example of an NP-Complete problem

11

A MARVEL OF ENGINEERING
SAT AND SMT

NP REDUCTIONS ONCE WERE USED TO TO SHOW THAT A PROBLEM WAS
DIFFICULT, NOW THEY ARE USED TO SHOW THAT A PROBLEM IS DO-ABLE

Sriram Rajamani, Microsoft Research

12

SOLVING SAT
SAT AND SMT

NAÏVE SOLUTION: BRUTE FORCE

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

Intuition: think of the bitvector of length N

where each bit represents a variable (1 for true, 0 for false)

a b c d

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

1

1

1

1

1

1

2N numbers “fit” into N bits

Guess every possible assignment of truth values

COMPLEXITY: EXPONENTIAL (2N)

WHAT ARE THE TRUTH VALUES FOR AN ARBITRARY
EQUATION?

13

SOLVING SAT
SAT AND SMT

NAÏVE SOLUTION: BRUTE FORCE

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

Intuition: think of the bitvector of length N

where each bit represents a variable (1 for true, 0 for false)

a b c d

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

1

1

1

1

1

1

2N numbers “fit” into N bits

Guess every possible assignment of truth values

COMPLEXITY: EXPONENTIAL (2N)

WHAT ARE THE TRUTH VALUES FOR AN ARBITRARY
EQUATION?

14

CAN WE DO BETTER THAN BRUTE FORCE?
SAT AND SMT

GENERICALLY SPEAKING, NO

THERE ARE COMMON CASES

WHERE SHORTCUTS APPLY

15

STRATEGY: PICK “LOW-HANGING FRUIT”
SAT AND SMT

SOME VARIABLES MAY HAVE
“OBVIOUS” ASSIGNMENTS

Find and assign to easy variables

Reduce the expression

Brute force once no

clever strategy remains

16

CONJUNCTIVE NORMAL FORM
SAT AND SMT

(a) ∧ (b ∨ c)

(a) ∧ ((b ∧ c) ∨ (c))(a) ∧ (¬b ∨ c)

(¬a) ∧ (¬b ∨ ¬c)

(a) ∧ ¬(b ∨ c)

¬(a ∧ b)

“an AND of ORs”

One or more clauses joined by conjunction where a clause is one or more possibly-negated variables joined by disjunction

a ∨ b ∨ c

a ∨ b ∧ c

By convention, and has

higher precedence than or

(a ∧ b)

17

HOW CONJUNCTIVE NORMAL FORM
SAT AND SMT

Any Boolean expression can be represented in CNF using the standard Boolean transformations

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q

¬(P ∧ Q) ⇔ ¬P ∨ ¬Q

¬¬P ⇔ P

P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R)

(P ∧ Q) ∨ (P ∧ R) ⇔ P ∧ (Q ∨ R)

One or more clauses joined by conjunction where a clause is one or more possibly-negated variables joined by disjunction

18

WHY CONJUNCTIVE NORMAL FORM
SAT AND SMT

One or more clauses joined by conjunction where a clause is one or more possibly-negated variables joined by disjunction

IF ONE CLAUSE IS UNSATISFIABLE, THE WHOLE EQUATION IS UNSATISFIABLE

(false) ∧ (…) ∧ (…) ∧ (…) ∧ (…) ∧ (…) ∧ (…) …

This helps to realize our philosophy of “obvious choices” – we’ll try to sort out

the most highly constrained clauses

Let’s next consider how to identify and utilitize these cases

19

THE UNIT CLAUSE
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

A unit clause or just (“unit”) is a

clause with no disjunctions

This Claus is an absolute unit

Units are tough customers! There’s

only one way to make a unit true, so

it yields an obvious choice

20

LEVERAGING UNITS
SAT AND SMT

(a) ∧ (b ∨ ¬a) ∧ (¬a ∨ c ∨ b)

Once units have been assigned values, the equation can be reduced

The new equation might yield more units

(b) ∧ (c ∨ b)

21

UNIT PROPAGATION
SAT AND SMT

Unit propagation: continue to identify and eliminate units until

1) There is a satisfying assignment

2) There is a false clause

3) There are no more units

(a) ∧ (b ∨ ¬a) ∧ (¬a ∨ ¬b)

(a) ∧ (b ∨ ¬a) ∧ (¬a ∨ c ∨ b)

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

22

UNIT PROPAGATION
SAT AND SMT

(a) ∧ (b ∨ ¬a) ∧ (¬a ∨ c ∨ b)

Once units have been assigned values, the equation can be reduced

The new equation might yield more units

Unit propagation: continue to identify and eliminate units until

1) There is a satisfying assignment

2) There is a false clause

3) There are no more units

(b) ∧ (c ∨ b)

(a) ∧ (b ∨ ¬a) ∧ (¬a ∨ ¬b)

23

PURE LITERALS
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

A literal (i.e. variable) that occurs only positively, or only negatively,

throughout the entire formula is pure

Again, a pure literal makes for an obvious choice.

Assigning the “obvious” value to a pure literal doesn’t guarantee

satisfiability, but it doesn’t hurt the search for satisfiability

Just like unit propagation, assigning to pure literals may simplify

clauses to form new pure literals

24

PURE LITERAL ELIMINATION
SAT AND SMT

Unit propagation: continue to identify and simplify out pure literals until

1) There is a satisfying assignment

2) There is a false clause

3) There are no more pure literals

(a ∨ ¬b) ∧ (¬b ∨ c)

(a ∨ ¬b) ∧ (¬b ∨ ¬c) ∧ (b ∨ c)

25

PUTTING THE STRATEGIES TOGETHER
SAT AND SMT

Unit propagation and pure literal elimination form the core of the most classic sat-

solving algorithm, DPLL

26

DPLL
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

function DPLL(φ)

 if φ = true then

 return true

 end if

 if φ contains a false clause then

 return false

 end if

 for all unit clauses l in φ do

 φ ← UNIT-PROPAGATE(l, φ)

 end for

 for all literals l occurring pure in φ do

 φ ← PURE-LITERAL-ASSIGN(l, φ)

 end for

 l ← CHOOSE-LITERAL(φ)

 return DPLL(φ ∧ l) ∨ DPLL(φ ∧ ¬l)

end function

27

NO MAGIC BULLET
OUTLINE / OVERVIEW

WE KNOW SOME CONSTRAINTS ARE
COMPUTATIONALLY HARD TO UNPACK

int main(){

 char s[80];

 scanf(“%s”, s);

 if (sha256sum(s) == c01b39c7a35ccc3b081a3e83d2c71fa9a767ebfeb45c69f08e17dfe3ef375a7b

}

28

FROM SAT TO SMT
OUTLINE / OVERVIEW

NEXT TIME…

Symbolic execution requires path constraints far more complex than Boolean

expressions.

Although a naïve reduction is somewhat straightforward, naivety does not gel well

with NP-completeness

	Slide 1: Exercise 30
	Slide 2: Exercise 30 Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Boolean Satisfiability
	Slide 5: Where We’re At
	Slide 6: Previously: Enhancing Symbolic Execution
	Slide 7: This Time: Satisfiability
	Slide 8: Boolean Satisfiability
	Slide 9: NP
	Slide 10: NP-Completeness
	Slide 11: A marvel of engineering
	Slide 12: Solving sat
	Slide 13: Solving sat
	Slide 14: can We do better than Brute Force?
	Slide 15: Strategy: pick “low-hanging fruit”
	Slide 16: Conjunctive Normal Form
	Slide 17: HOW Conjunctive Normal Form
	Slide 18: Why Conjunctive Normal Form
	Slide 19: The Unit Clause
	Slide 20: Leveraging Units
	Slide 21: Unit Propagation
	Slide 22: Unit Propagation
	Slide 23: Pure literals
	Slide 24: Pure literal Elimination
	Slide 25: Putting the strategies together
	Slide 26: DPLL
	Slide 27: No Magic Bullet
	Slide 28: From SAT to SMT

