
EXERCISE 30
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CONCOLIC EXECUTION REVIEW

What is the benefit of concolic execution over symbolic execution? How does it 

compare in terms of soundness / completeness of vulnerability finding? 
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CONCOLIC EXECUTION REVIEW



ADMINISTRIVIA
AND 
ANNOUNCEMENTS

Quiz 3 next Friday



BOOLEAN 
SATISFIABILITY
EECS 677: Software Security Evaluation

Drew Davidson



WHERE WE’RE AT

TOOLS / TECHNIQUES UNDERLYING 
SYMBOLIC EXECUTION
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PREVIOUSLY: ENHANCING SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

GENERATING TEST CASES

PRIORITIZING STATES IN THE SYMBOLIC 
EXECUTION TREE

PRUNING DUPLICATE STATES

CONCRETIZING (SOME) INPUT TO MAKE 
PROGRESS
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THIS TIME: SATISFIABILITY
OUTLINE / OVERVIEW

THE MAGIC THAT MADE SYMBOLIC 
EXECUTION WORK WAS THE SOLVER

Determines if a path constraint is feasible

Induces a test case that satisfies the path 

constraint

Allows for consistent concretization
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BOOLEAN SATISFIABILITY
SAT AND SMT

AT THE ROOT OF THE SOLVER IS A MECHANISM 
FOR SOLVING A HARD PROBLEM:

Given a Boolean expression, provide a satisfying 

assignment to its variables or indicate no such assignment 

is possible

B ∧ 𝐴

B ∨ 𝐴

¬𝐴 ∧ 𝐴

The search for a solution 

requires a lot of computation 

Search scales rapidly with 

the size of the problem

Constant time

Linear time

n log n time

polynomial time

Exponential time

B = 1, A = 1

B = 0, A = 1

B = 1, A = 0

B = 1, A = 1

No solution
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NP
SAT AND SMT

THE CLASS OF PROBLEMS WHERE…

A solution can be generated in polynomial time by a 

nondeterministic Turing machine

A solution can be verified in polynomial time by a 

deterministic Turing machine
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NP-COMPLETENESS
SAT AND SMT

THE CLASS OF PROBLEMS WHERE…

The “most difficult problems in NP”

A solution could be used as a solver for any problem in NP

SAT is the canonical example of an NP-Complete problem
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A MARVEL OF ENGINEERING
SAT AND SMT

NP REDUCTIONS ONCE WERE USED TO TO SHOW THAT A PROBLEM WAS 
DIFFICULT, NOW THEY ARE USED TO SHOW THAT A PROBLEM IS DO-ABLE

Sriram Rajamani, Microsoft Research
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SOLVING SAT
SAT AND SMT

NAÏVE SOLUTION: BRUTE FORCE

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

Intuition: think of the bitvector of length N 

where each bit represents a variable (1 for true, 0 for false)

a b c d

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

1

1

1

1

1

1

2N numbers “fit” into N bits 

Guess every possible assignment of truth values 

COMPLEXITY: EXPONENTIAL (2N)

WHAT ARE THE TRUTH VALUES FOR AN ARBITRARY 
EQUATION? 
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SOLVING SAT
SAT AND SMT

NAÏVE SOLUTION: BRUTE FORCE

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

Intuition: think of the bitvector of length N 

where each bit represents a variable (1 for true, 0 for false)

a b c d

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

1

1

1

1

1

1

2N numbers “fit” into N bits 

Guess every possible assignment of truth values 

COMPLEXITY: EXPONENTIAL (2N)

WHAT ARE THE TRUTH VALUES FOR AN ARBITRARY 
EQUATION? 
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CAN WE DO BETTER THAN BRUTE FORCE?
SAT AND SMT

GENERICALLY SPEAKING, NO

THERE ARE COMMON CASES 

WHERE SHORTCUTS APPLY
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STRATEGY: PICK “LOW-HANGING FRUIT”
SAT AND SMT

SOME VARIABLES MAY HAVE 
“OBVIOUS” ASSIGNMENTS 

Find and assign to easy variables

Reduce the expression

Brute force once no 

clever strategy remains
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CONJUNCTIVE NORMAL FORM
SAT AND SMT

(a) ∧ (b ∨ c)

(a) ∧ ((b ∧  c) ∨ (c))(a) ∧ (¬b ∨ c)

(¬a) ∧ (¬b ∨ ¬c)

(a) ∧ ¬(b ∨ c)

¬(a ∧ b)

“an AND of ORs”

One or more clauses joined by conjunction where a clause is one or more possibly-negated variables joined by disjunction

a ∨ b ∨ c

a ∨ b ∧ c

By convention, and has 

higher precedence than or

(a ∧ b)
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HOW CONJUNCTIVE NORMAL FORM
SAT AND SMT

Any Boolean expression can  be represented in CNF using the standard Boolean transformations

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q

¬(P ∧ Q) ⇔ ¬P ∨ ¬Q

¬¬P ⇔ P

P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R)

(P ∧ Q) ∨ (P ∧ R) ⇔ P ∧ (Q ∨ R)

One or more clauses joined by conjunction where a clause is one or more possibly-negated variables joined by disjunction
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WHY CONJUNCTIVE NORMAL FORM
SAT AND SMT

One or more clauses joined by conjunction where a clause is one or more possibly-negated variables joined by disjunction

IF ONE CLAUSE IS UNSATISFIABLE, THE WHOLE EQUATION IS UNSATISFIABLE 

(false) ∧ (…) ∧ (…) ∧ (…) ∧ (…) ∧ (…) ∧ (…) …

This helps to realize our philosophy of “obvious choices” – we’ll try to sort out 

the most highly constrained clauses

Let’s next consider how to identify and utilitize these cases
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THE UNIT CLAUSE
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

A unit clause or just (“unit”) is a 

clause with no disjunctions

This Claus is an absolute unit

Units are tough customers! There’s 

only one way to make a unit true, so 

it yields an obvious choice
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LEVERAGING UNITS
SAT AND SMT

(a) ∧ (b ∨ ¬a) ∧ (¬a ∨ c ∨ b)

Once units have been assigned values, the equation can be reduced

The new equation might yield more units

(b) ∧ (c ∨ b)



21

UNIT PROPAGATION
SAT AND SMT

Unit propagation: continue to identify and eliminate units until 

1) There is a satisfying assignment

2) There is a false clause

3) There are no more units

(a) ∧ (b ∨ ¬a) ∧ (¬a ∨ ¬b)

(a) ∧ (b ∨ ¬a) ∧ (¬a ∨ c ∨ b)

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)
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UNIT PROPAGATION
SAT AND SMT

(a) ∧ (b ∨ ¬a) ∧ (¬a ∨ c ∨ b)

Once units have been assigned values, the equation can be reduced

The new equation might yield more units

Unit propagation: continue to identify and eliminate units until 

1) There is a satisfying assignment

2) There is a false clause

3) There are no more units

(b) ∧ (c ∨ b)

(a) ∧ (b ∨ ¬a) ∧ (¬a ∨ ¬b)
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PURE LITERALS
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

A literal (i.e. variable) that occurs only positively, or only negatively, 

throughout the entire formula is pure

Again, a pure literal makes for an obvious choice. 

Assigning the “obvious” value to a pure literal doesn’t guarantee 

satisfiability, but it doesn’t hurt the search for satisfiability

Just like unit propagation, assigning to pure literals may simplify 

clauses to form new pure literals
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PURE LITERAL ELIMINATION
SAT AND SMT

Unit propagation: continue to identify and simplify out pure literals until 

1) There is a satisfying assignment

2) There is a false clause

3)   There are no more pure literals

(a ∨ ¬b) ∧ (¬b ∨ c)

(a ∨ ¬b) ∧ (¬b ∨ ¬c) ∧ (b ∨ c)
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PUTTING THE STRATEGIES TOGETHER
SAT AND SMT

Unit propagation and pure literal elimination form the core of the most classic sat-

solving algorithm, DPLL
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DPLL
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

function DPLL(φ)

 if φ = true then

  return true

 end if

 if φ contains a false clause then

  return false

 end if

 for all unit clauses l in φ do

  φ ← UNIT-PROPAGATE(l, φ)

 end for

 for all literals l occurring pure in φ do

  φ ← PURE-LITERAL-ASSIGN(l, φ)

 end for

 l ← CHOOSE-LITERAL(φ)

 return DPLL(φ ∧ l) ∨ DPLL(φ ∧ ¬l)

end function
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NO MAGIC BULLET
OUTLINE / OVERVIEW

WE KNOW SOME CONSTRAINTS ARE 
COMPUTATIONALLY HARD TO UNPACK

int main(){

  char s[80];

  scanf(“%s”, s);

  if (sha256sum(s) == c01b39c7a35ccc3b081a3e83d2c71fa9a767ebfeb45c69f08e17dfe3ef375a7b

}
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FROM SAT TO SMT
OUTLINE / OVERVIEW

NEXT TIME…

Symbolic execution requires path constraints far more complex than Boolean 

expressions.

Although a naïve reduction is somewhat straightforward, naivety does not gel well 

with NP-completeness
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