EXERCISE 31

CONCOLIC EXECUTION REVIEW

What is the benefit of concolic execution over symbolic execution? How does it
compare in terms of soundness / completeness of vulnerability finding?

EXERCISE 31 SOLUTION
CONCOLIC EXECUTION REVIEW

EXERCISE 31

CONCOLIC EXECUTION REVIEW
Write your name and answer the following on a piece of paper

What is the benefit of concolic execution over symbolic execution? How does it
compare in terms of soundness / completeness of vulnerability finding?

Quiz 3 is on Friday

ADMINISTRIVIA
AND
ANNOUNCEMENTS

BOOLEAN
SATISFIABILITY

EECS 677: Software Security Evaluation

Drew Davidson

(<

2R

WHERE WE’RE AT

TOOLS / TECHNIQUES UNDERLYING
I SYMBOLIC EXECUTION

REVIOUSLY: ENHANCING SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

GENERATING TEST CASES

PRIORITIZING STATES IN THE SYMBOLIC
EXECUTION TREE

PRUNING DUPLICATE STATES

CONCRETIZING (SOME) I&BYY TO MAKE
PROGRESS L\l
Yl)b

valiel

THIS TIME: SATISFIABILITY

OUTLINE / OVERVIEW

THE MAGIC THAT MADE SYMBOLIC
EXECUTION WORK WAS THE SOLVER

SATISFACTION

Determines if a path constraint is feasible

Induces a test case that satisfies the path
constraint

Allows for consistent concretization

BOOLEAN SATISFIABILITY

SAT AND SMT

AT THE ROOT OF THE SOLVER IS A MECHANISM
FOR SOLVING A HARD PROBLEM:

Given a Boolean expression, provide a satisfying

assignment to its variables or indicate no such assignment .
is possible The search for a solution

requires a lot of computation

Constant time
P = | Linear time

BAAd A=) nlog n time
Search scales rapidly with

B VA b X b %ollynomlql time the size of the problem
N EX@onentiaI time
4=1 A=

NP

SAT AND SMT

THE CLASS OF PROBLEMS WHERE...

A solution can be generated in polynomial time by a
nondeterministic Turing machine

A solution can be verified in polynomial time by a
deterministic Turing machine

1B®

NP

NP-COMPLETENESS

SAT AND SMT

THE CLASS OF PROBLEMS WHERE...

A solution could be used as a solver for any problem in NP

The “most difficult problems in NP”

NP-Complete

P = NP
= NP-Complete

SAT is the canonical example of an NP-Complete problem

5 Y4

Complexity

THE MARVEL OF ENGINEERING

SAT AND SMT

NP REDUCTIONS ONCE WERE USED TO TO SHOW THAT A PROBLEM WAS
DIFFICULT, NOW THEY ARE USED TO SHOW THAT A PROBLEM IS DO-ABLE

12

HOW DO SAT SOLVERS WORK?

SAT AND SMT

NAIVE SOLUTION: EXPONENTIAL TIME 2N

(@A(bVec)A(-aVecVd)A(-cVd)A(-cV-dV-a)A(bVd)

SOLVER STRATEGIES

SAT AND SMT

WE “OFTEN” CAN DO BETTER THAN THE WORST CASE

14

CONJUNCTIVE NORMAL FORM

SAT AND SMT

A CONJUNCTION OF CLAUSES

Each clause may include 1 or more literals, 0 or more negations, 0 or more disjunctions

15

CONJUNCTIVE NORMAL FORM

SAT AND SMT

A CONJUNCTION OF CLAUSES 7([

Each clause may include 1 or more literals, 0 or more negations, 0 or4fiffarg¢ disjunctions

SV
LF)/(Q) v

PAQVR)

PA(-QVR) 1/
gﬁPVQv(R)L/

CONJUNCTIVE NORMAL FORM

SAT AND SMT

Any Boolean expression can be represented as a conjunction of disjunctions using the
standard Boolean transformations

Boolean transformations:

-(PVQ) &= -PA-Q

-(PAQ) &= -PV -Q

-—-P&=> P
(PA(QVR) &= ((PAQ)V (PAR))
(PV(QAR) <= ((PVQ

>
o
<
Z

M\IJUNCTIVE NORMAL FORM: STRATEGY

EVERY CLAUSE MUST BE SATISFIED

(PVQ)A(PVR)

18

UNIT PROPAGATION

SAT AND SMT

a literal that exists all alone in a clause with only one literal is a unit

s \w\;‘;

wh |

@A(ch)A(ﬁa’Vch)A(—-ch)A(—-cVﬂdV?a)A(de)

K;\&—l/‘wf l:“j.

(Jo AR C(v A) ’\(,“l CVv 'k,) A <*| L‘(_JIA);\ ’ ‘1‘4

PEN TR ERND

A= f‘i/“’lu(

19

PURE LITERAL ELIMINATION

SAT AND SMT

a literal that occurs only positively, or only negatively, in a formula is pure

(@A(bVec)A(-aVecVd)A(-cVd)A(-cV-dV-a)A(bVd)
L‘t\lww{
n A (Aaverd) A7) ”\(“ ¢ < "‘M>

=t

(Luk) /\C‘"’L"U /\<~.(v—1JD

20

DPLL

SAT AND SMT

(@)A(bVc)A(-aVcVd)A(-cVd)A(-cV-dV-a)A(bVd)

function DPLL()
if ¢ = true then
return true
end if
if ¢ contains a false clause then
return false
end if
for all unit clauses | in ¢ do
@ < UNIT-PROPAGATE(l, ¢)
end for
for all literals | occurring pure in @ do
@ < PURE-LITERAL-ASSIGN(I, ¢)
end for
| < CHOOSE-LITERAL(¢p)
return DPLL(¢p A1) V DPLL(@ A =l)
end function

NO MAGIC BULLET

OUTLINE / OVERVIEW

WE KNOW SOME CONSTRAINTS ARE
COMPUTATIONALLY HARD TO UNPACK

int main(){
char s[80];
scanf(“%s”, s);

if (sha256sum(s) == c01b39c7a35ccc3b081a3e83d2c7 0767ebfeb45c6!

}

22

NO MAGIC BULLET

OUTLINE / OVERVIEW

WE KNOW SOME CONSTRAINTS ARE
COMPUTATIONALLY HARD TO UNPACK

int main () {
char s[80];
scanf (“%s”, s);
1if (sha256sum(s) == c01b39c7a35ccc3b08la3e83d2c71fa%a’/67ebfebd5c69f08el7dfe3ef375a7b) {
return 1 / 0;

FROM SAT TO SMT

OUTLINE / OVERVIEW

NEXT TIME...
Symbolic execution requires path constraints far more complex than Boolean

expressions.
Although a naive reduction is somewhat straightforward, naivety does not gel well

with NP-completeness

	Slide 1: Exercise 31
	Slide 2: Exercise 31 Solution
	Slide 3: Exercise 31
	Slide 4: Administrivia and Announcements
	Slide 5: Boolean Satisfiability
	Slide 6: Where We’re At
	Slide 7: Previously: Enhancing Symbolic Execution
	Slide 8: This Time: Satisfiability
	Slide 9: Boolean Satisfiability
	Slide 10: NP
	Slide 11: NP-Completeness
	Slide 12: The marvel of engineering
	Slide 13: How do sat Solvers work?
	Slide 14: Solver Strategies
	Slide 15: Conjunctive Normal FOrm
	Slide 16: Conjunctive Normal FOrm
	Slide 17: Conjunctive Normal FOrm
	Slide 18: Conjunctive Normal Form: Strategy
	Slide 19: Unit Propagation
	Slide 20: Pure literal Elimination
	Slide 21: DPLL
	Slide 22: No Magic Bullet
	Slide 23: No Magic Bullet
	Slide 24: From SAT to SMT

