
EXERCISE 31
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CONCOLIC EXECUTION REVIEW

What is the benefit of concolic execution over symbolic execution? How does it 

compare in terms of soundness / completeness of vulnerability finding? 



EXERCISE 31 SOLUTION
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CONCOLIC EXECUTION REVIEW



EXERCISE 31
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CONCOLIC EXECUTION REVIEW

Write your name and answer the following on a piece of paper

What is the benefit of concolic execution over symbolic execution? How does it 

compare in terms of soundness / completeness of vulnerability finding?



ADMINISTRIVIA
AND 
ANNOUNCEMENTS

Quiz 3 is on Friday



BOOLEAN 
SATISFIABILITY
EECS 677: Software Security Evaluation

Drew Davidson



WHERE WE’RE AT

TOOLS / TECHNIQUES UNDERLYING 
SYMBOLIC EXECUTION
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PREVIOUSLY: ENHANCING SYMBOLIC EXECUTION
OUTLINE /  OVERVIEW

GENERATING TEST CASES

PRIORITIZING STATES IN THE SYMBOLIC 
EXECUTION TREE

PRUNING DUPLICATE STATES

CONCRETIZING (SOME) INPUT TO MAKE 
PROGRESS
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THIS TIME: SATISFIABILITY
OUTLINE /  OVERVIEW

THE MAGIC THAT MADE SYMBOLIC 
EXECUTION WORK WAS THE SOLVER

Determines if a path constraint is feasible

Induces a test case that satisfies the path 

constraint

Allows for consistent concretization
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BOOLEAN SATISFIABILITY
SAT AND SMT

AT THE ROOT OF THE SOLVER IS A MECHANISM 
FOR SOLVING A HARD PROBLEM:

Given a Boolean expression, provide a satisfying 

assignment to its variables or indicate no such assignment 

is possible

B ∧ 𝐴

B ∨ 𝐴

¬𝐴 ∧ 𝐴

The search for a solution 

requires a lot of computation 

Search scales rapidly with 

the size of the problem

Constant time

Linear time

n log n time

polynomial time

Exponential time
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NP
SAT AND SMT

THE CLASS OF PROBLEMS WHERE…

A solution can be generated in polynomial time by a 

nondeterministic Turing machine

A solution can be verified in polynomial time by a 

deterministic Turing machine

𝑃 = 𝑁𝑃
?
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NP-COMPLETENESS
SAT AND SMT

THE CLASS OF PROBLEMS WHERE…

The “most difficult problems in NP”

A solution could be used as a solver for any problem in NP

SAT is the canonical example of an NP-Complete problem
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THE MARVEL OF ENGINEERING
SAT AND SMT

NP REDUCTIONS ONCE WERE USED TO TO SHOW THAT A PROBLEM WAS 
DIFFICULT, NOW THEY ARE USED TO SHOW THAT A PROBLEM IS DO-ABLE
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HOW DO SAT SOLVERS WORK?
SAT AND SMT

NAÏVE SOLUTION: EXPONENTIAL TIME 2^N 

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)
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SOLVER STRATEGIES
SAT AND SMT

WE “OFTEN” CAN DO BETTER THAN THE WORST CASE
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CONJUNCTIVE NORMAL FORM
SAT AND SMT

A CONJUNCTION OF CLAUSES

Each clause may include 1 or more literals, 0 or more negations, 0 or more disjunctions
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CONJUNCTIVE NORMAL FORM
SAT AND SMT

A CONJUNCTION OF CLAUSES

Each clause may include 1 or more literals, 0 or more negations, 0 or more disjunctions

P

P ∧ Q

P ∧ (Q ∨ R)

P ∧ (¬Q ∨ R)

P ∨ Q ∨ R)X
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CONJUNCTIVE NORMAL FORM
SAT AND SMT

Any Boolean expression can  be represented as a conjunction of disjunctions using the 

standard Boolean transformations

Boolean transformations:

¬(P ∨ Q) ⇐⇒ ¬P ∧ ¬Q

¬(P ∧ Q) ⇐⇒ ¬P ∨ ¬Q

¬¬P ⇐⇒ P

(P ∧ (Q ∨ R)) ⇐⇒ ((P ∧ Q) ∨ (P ∧ R))

(P ∨ (Q ∧ R)) ⇐⇒ ((P ∨ Q) ∧ (P ∨ R))
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CONJUNCTIVE NORMAL FORM: STRATEGY
SAT AND SMT

EVERY CLAUSE MUST BE SATISFIED

(P ∨ Q) ∧ (P ∨ R)
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UNIT PROPAGATION
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

a literal that exists all alone in a clause with only one literal is a unit
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PURE LITERAL ELIMINATION
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

a literal that occurs only positively, or only negatively, in a formula is pure
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DPLL
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

function DPLL(φ)

 if φ = true then

  return true

 end if

 if φ contains a false clause then

  return false

 end if

 for all unit clauses l in φ do

  φ ← UNIT-PROPAGATE(l, φ)

 end for

 for all literals l occurring pure in φ do

  φ ← PURE-LITERAL-ASSIGN(l, φ)

 end for

 l ← CHOOSE-LITERAL(φ)

 return DPLL(φ ∧ l) ∨ DPLL(φ ∧ ¬l)

end function
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NO MAGIC BULLET
OUTLINE /  OVERVIEW

WE KNOW SOME CONSTRAINTS ARE 
COMPUTATIONALLY HARD TO UNPACK

int main(){

  char s[80];

  scanf(“%s”, s);

  if (sha256sum(s) == c01b39c7a35ccc3b081a3e83d2c71fa9a767ebfeb45c69f08e17dfe3ef375a7b

}
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NO MAGIC BULLET
OUTLINE /  OVERVIEW

WE KNOW SOME CONSTRAINTS ARE 
COMPUTATIONALLY HARD TO UNPACK

int main(){

  char s[80];

  scanf(“%s”, s);

  if (sha256sum(s) == c01b39c7a35ccc3b081a3e83d2c71fa9a767ebfeb45c69f08e17dfe3ef375a7b){

    return 1 / 0;

  }

}



24

FROM SAT TO SMT
OUTLINE /  OVERVIEW

NEXT TIME…

Symbolic execution requires path constraints far more complex than Boolean 

expressions.

Although a naïve reduction is somewhat straightforward, naivety does not gel well 

with NP-completeness
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