
EXERCISE 31

1

CONCOLIC EXECUTION REVIEW

What is the benefit of concolic execution over symbolic execution? How does it

compare in terms of soundness / completeness of vulnerability finding?

EXERCISE 31 SOLUTION

2

CONCOLIC EXECUTION REVIEW

EXERCISE 31

3

CONCOLIC EXECUTION REVIEW

Write your name and answer the following on a piece of paper

What is the benefit of concolic execution over symbolic execution? How does it

compare in terms of soundness / completeness of vulnerability finding?

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Quiz 3 is on Friday

BOOLEAN
SATISFIABILITY
EECS 677: Software Security Evaluation

Drew Davidson

WHERE WE’RE AT

TOOLS / TECHNIQUES UNDERLYING
SYMBOLIC EXECUTION

6

7

PREVIOUSLY: ENHANCING SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

GENERATING TEST CASES

PRIORITIZING STATES IN THE SYMBOLIC
EXECUTION TREE

PRUNING DUPLICATE STATES

CONCRETIZING (SOME) INPUT TO MAKE
PROGRESS

8

THIS TIME: SATISFIABILITY
OUTLINE / OVERVIEW

THE MAGIC THAT MADE SYMBOLIC
EXECUTION WORK WAS THE SOLVER

Determines if a path constraint is feasible

Induces a test case that satisfies the path

constraint

Allows for consistent concretization

9

BOOLEAN SATISFIABILITY
SAT AND SMT

AT THE ROOT OF THE SOLVER IS A MECHANISM
FOR SOLVING A HARD PROBLEM:

Given a Boolean expression, provide a satisfying

assignment to its variables or indicate no such assignment

is possible

B ∧ 𝐴

B ∨ 𝐴

¬𝐴 ∧ 𝐴

The search for a solution

requires a lot of computation

Search scales rapidly with

the size of the problem

Constant time

Linear time

n log n time

polynomial time

Exponential time

10

NP
SAT AND SMT

THE CLASS OF PROBLEMS WHERE…

A solution can be generated in polynomial time by a

nondeterministic Turing machine

A solution can be verified in polynomial time by a

deterministic Turing machine

𝑃 = 𝑁𝑃
?

11

NP-COMPLETENESS
SAT AND SMT

THE CLASS OF PROBLEMS WHERE…

The “most difficult problems in NP”

A solution could be used as a solver for any problem in NP

SAT is the canonical example of an NP-Complete problem

12

THE MARVEL OF ENGINEERING
SAT AND SMT

NP REDUCTIONS ONCE WERE USED TO TO SHOW THAT A PROBLEM WAS
DIFFICULT, NOW THEY ARE USED TO SHOW THAT A PROBLEM IS DO-ABLE

13

HOW DO SAT SOLVERS WORK?
SAT AND SMT

NAÏVE SOLUTION: EXPONENTIAL TIME 2^N

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

14

SOLVER STRATEGIES
SAT AND SMT

WE “OFTEN” CAN DO BETTER THAN THE WORST CASE

15

CONJUNCTIVE NORMAL FORM
SAT AND SMT

A CONJUNCTION OF CLAUSES

Each clause may include 1 or more literals, 0 or more negations, 0 or more disjunctions

16

CONJUNCTIVE NORMAL FORM
SAT AND SMT

A CONJUNCTION OF CLAUSES

Each clause may include 1 or more literals, 0 or more negations, 0 or more disjunctions

P

P ∧ Q

P ∧ (Q ∨ R)

P ∧ (¬Q ∨ R)

P ∨ Q ∨ R)X

17

CONJUNCTIVE NORMAL FORM
SAT AND SMT

Any Boolean expression can be represented as a conjunction of disjunctions using the

standard Boolean transformations

Boolean transformations:

¬(P ∨ Q) ⇐⇒ ¬P ∧ ¬Q

¬(P ∧ Q) ⇐⇒ ¬P ∨ ¬Q

¬¬P ⇐⇒ P

(P ∧ (Q ∨ R)) ⇐⇒ ((P ∧ Q) ∨ (P ∧ R))

(P ∨ (Q ∧ R)) ⇐⇒ ((P ∨ Q) ∧ (P ∨ R))

18

CONJUNCTIVE NORMAL FORM: STRATEGY
SAT AND SMT

EVERY CLAUSE MUST BE SATISFIED

(P ∨ Q) ∧ (P ∨ R)

19

UNIT PROPAGATION
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

a literal that exists all alone in a clause with only one literal is a unit

20

PURE LITERAL ELIMINATION
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

a literal that occurs only positively, or only negatively, in a formula is pure

21

DPLL
SAT AND SMT

(a) ∧ (b ∨ c) ∧ (¬a ∨ c ∨ d) ∧ (¬c ∨ d) ∧ (¬c ∨ ¬d ∨ ¬a) ∧ (b ∨ d)

function DPLL(φ)

 if φ = true then

 return true

 end if

 if φ contains a false clause then

 return false

 end if

 for all unit clauses l in φ do

 φ ← UNIT-PROPAGATE(l, φ)

 end for

 for all literals l occurring pure in φ do

 φ ← PURE-LITERAL-ASSIGN(l, φ)

 end for

 l ← CHOOSE-LITERAL(φ)

 return DPLL(φ ∧ l) ∨ DPLL(φ ∧ ¬l)

end function

22

NO MAGIC BULLET
OUTLINE / OVERVIEW

WE KNOW SOME CONSTRAINTS ARE
COMPUTATIONALLY HARD TO UNPACK

int main(){

 char s[80];

 scanf(“%s”, s);

 if (sha256sum(s) == c01b39c7a35ccc3b081a3e83d2c71fa9a767ebfeb45c69f08e17dfe3ef375a7b

}

23

NO MAGIC BULLET
OUTLINE / OVERVIEW

WE KNOW SOME CONSTRAINTS ARE
COMPUTATIONALLY HARD TO UNPACK

int main(){

 char s[80];

 scanf(“%s”, s);

 if (sha256sum(s) == c01b39c7a35ccc3b081a3e83d2c71fa9a767ebfeb45c69f08e17dfe3ef375a7b){

 return 1 / 0;

 }

}

24

FROM SAT TO SMT
OUTLINE / OVERVIEW

NEXT TIME…

Symbolic execution requires path constraints far more complex than Boolean

expressions.

Although a naïve reduction is somewhat straightforward, naivety does not gel well

with NP-completeness

	Slide 1: Exercise 31
	Slide 2: Exercise 31 Solution
	Slide 3: Exercise 31
	Slide 4: Administrivia and Announcements
	Slide 5: Boolean Satisfiability
	Slide 6: Where We’re At
	Slide 7: Previously: Enhancing Symbolic Execution
	Slide 8: This Time: Satisfiability
	Slide 9: Boolean Satisfiability
	Slide 10: NP
	Slide 11: NP-Completeness
	Slide 12: The marvel of engineering
	Slide 13: How do sat Solvers work?
	Slide 14: Solver Strategies
	Slide 15: Conjunctive Normal FOrm
	Slide 16: Conjunctive Normal FOrm
	Slide 17: Conjunctive Normal FOrm
	Slide 18: Conjunctive Normal Form: Strategy
	Slide 19: Unit Propagation
	Slide 20: Pure literal Elimination
	Slide 21: DPLL
	Slide 22: No Magic Bullet
	Slide 23: No Magic Bullet
	Slide 24: From SAT to SMT

