
EXERCISE #14

1

REVIEW: INFORMATION FLOW

Write your name and answer the following on a piece of paper

Provide an instance of a program with an implicit information flow from a confidential

(high-security) source to an untrusted (low-security) sink

EXERCISE #14: SOLUTION

2

REVIEW: INFORMATION FLOW

Provide an instance of a program with an implicit information flow from a confidential

(high-security) source to an untrusted (low-security) sink

ADMINISTRIVIA
AND
ANNOUNCEMENTS

For EECS777 Students: Paper #1 reading assignment is up!

CLASS PROGRESS

SHOWING SOME APPLICATIONS OF
STATIC DATAFLOW

4

5

LAST TIME: DATAFLOW DEPLOYMENT
PREVIOUSLY: INFORMATION FLOW

USING DATAFLOW IN PRACTICAL CONTEXTS

- Ex. - Looking for secret-holding variables

6

IMPLICIT FLOW
PREVIOUSLY: INFORMATION FLOW

X = source();

Y = 0;

if (X == 1){

 Y = 1;

 SINK(1);

}

if (X == 2){

 Y = 2;

}

…

Leak!

SIDE CHANNELS
EECS 677: Software Security Evaluation

Drew Davidson

OVERVIEW

CONTEMPLATE OTHER WAYS THAT
SNEAKY DATA FLOWS CAN OCCUR

8

LECTURE OUTLINE

• Threat Models

• Side Channels - Overview

• Timing

• A dataflow approach

10

THINKING ABOUT ATTACKS
RECALL: THREAT MODELS

THERE’S NO SUCH THING AS “ABSOLUTE
SECURITY”
– It’s always possible to come up with SOME

(potentially wacky) scenario where the adversary

can subvert a system

CONSIDER THE VARIOUS ATTACK CLASSES

– Denial of Service: Availability is compromised

– Exfiltration: Confidentiality policy is compromised

– Compromise: Integrity policy is compromised

11

THINKING ABOUT ATTACKS
RECALL: THREAT MODELS

THERE’S NO SUCH THING AS “ABSOLUTE
SECURITY”
– It’s always possible to come up with SOME

(potentially wacky) scenario where the adversary

can subvert a system

CONSIDER THE VARIOUS ATTACK CLASSES

– Denial of Service: Availability is compromised

– Exfiltration: Confidentiality policy is compromised

– Compromise: Integrity policy is compromised

These assumptions are
captured by a threat
model

12

UNCONVENTIONAL ADVERSARIES
RECALL: THREAT MODELS

OUR NOTIONS OF COMPLETENESS ARE ULTIMATELY TIED TO OUR ASSUMPTIONS

Deus Deceptor (Game over)

13

UNCONVENTIONAL ADVERSARIES
RECALL: THREAT MODELS

OUR NOTIONS OF COMPLETENESS ARE ULTIMATELY TIED TO OUR ASSUMPTIONS

– An adversary may have the ability to influence (or observe) phenomena that are outside of

the threat model

– Anecdote: sensor input spoofing attacks

SISA: Extra-semantic influence

Side-channels: Extra-semantic observation

LECTURE OUTLINE

• Threat Models

• Side Channels - Overview

• Timing

• A dataflow approach

15

THE BASIC IDEA OF SIDE CHANNELS
SIDE CHANNELS

ABSTRACTION IS A KEY PRINCIPLE OF COMPUTER SCIENCE!
As a programmer, you shouldn’t need to know underlying details

AS A SECURITY EXPERT, THESE DETAILS MIGHT END UP BEING IMPORTANT!
The way a program accomplishes its tasks are important, especially from a security

aspect

- How long does it take for the program to do X ?

- How hot does it make the processor when X happens?

- How much power does it draw when X happens?

16

UNCONVENTIONAL ADVERSARIES
RECALL: THREAT MODELS

(SADLY) OUR SOFTWARE NEEDS TO BE MANIFESTED IN HARDWARE

17

SIDE CHANNELS – THE BIG IDEA
SIDE CHANNELS - INSTANCES

COMPUTATION MAY HAVE EFFECTS OUTSIDE OF PROGRAM SEMANTICS
Some operations (internally) take longer based on aspects of the data

18

TEMPEST
SIDE CHANNELS – HISTORY

ELECTROMAGNETIC LEAKAGE OF KEYS

– WWII: Bell Telephone discovers

electromagnetic leakage in one-time

pad teleprinters, detectable at 100-ft

radius

– 1951: CIA rediscovers leakage,

detectable at 200-ft radius

– 1964: TEMPEST shielding protocol

established

19

TEMPEST
SIDE CHANNELS – HISTORY

ELECTROMAGNETIC LEAKAGE OF KEYS

– WWII: Bell Telephone discovers

electromagnetic leakage in one-time

pad teleprinters, detectable at 100-ft

radius

– 1951: CIA rediscovers leakage,

detectable at 200-ft radius

– 1964: TEMPEST shielding protocol

established

20

VAN ECK PHREAKING
SIDE CHANNELS – HISTORY

ELECTROMAGNETIC LEAKAGE OF
MONITORS

– Pick up the monitor’s electromagnetic

emanations that differ depending on

how the screen lights up

– Originally determined for CRT (1985),

also discovered for LCD monitors

(2004)

21

SIDE CHANNELS – PARTIAL CREDIT
SIDE CHANNELS - INSTANCES

EVEN “HINTS” ABOUT SECRET DATA CAN BE PROBLEMATIC

Assume you’re trying to guess a password

– knowing even 1 character massively reduces the search space

– knowing the length of the password reduces the search space

22

COVERT CHANNELS
SIDE CHANNELS

SOMETIMES A PROGRAM WANTS TO LEAK DATA

Exfiltration !

LECTURE OUTLINE

• Threat Models

• Side Channels - Overview

• Timing

• A dataflow approach

24

TIMING SIDE CHANNELS
SIDE CHANNELS - INSTANCES

SOME COMPUTATIONS TAKE LONGER THAN OTHERS

Some operations (internally) take longer based on aspects of the data

bool checkPW(const char * given){

 const char * expected = “12345”;

 int gLen = strlen(given);

 int eLen = strlen(expected);

 if (gLen != eLen){ return false; }

 for (int i = 0; i < eLen; i++){

 if (given[i] != expected[i]){

 return false;

 }

 }

 return true;

}

25

TIMING SIDE CHANNELS
SIDE CHANNELS - INSTANCES

SOME COMPUTATIONS TAKE LONGER THAN OTHERS

Some operations (internally) take longer based on aspects of the data

THREAT MODEL

Interactive, low-latency*, black-box access to the program, precise timer

*: May be overcome with more samples

ProgramAdversary

Password attempts

timing

26

TIMING SIDE CHANNELS - FIX
SIDE CHANNELS - INSTANCES

bool checkPW(const char * given){

 const char * expected = “12345”;

 int gLen = strlen(given);

 int eLen = strlen(expected);

 if (gLen != eLen){ return false; }

 for (int i = 0; i < eLen; i++){

 if (given[i] != expected[i]){

 return false;

 }

 }

 return true;

}

bool checkPW(const char * given){

 const char * expected = “12345”;

 int gLen = strlen(given);

 int eLen = strlen(expected);

 bool ok = true;

 if (gLen != eLen){ ok = false; }

 for (int i = 0; i < eLen; i++){

 int gIdx = math.min(gLen - 1, i);

 if (given[gIdx] != expected[i]){

 ok = false;

 }

 }

 return ok;

}

27

TIMING SIDE CHANNELS - FIX
SIDE CHANNELS - INSTANCES

LIMITATIONS OF UNIFORM EXECUTION

- Necessarily slow down your computation to the worst case

- May require some pretty precise understanding of timing

- May not always be obvious what the worst-case even is

LECTURE OUTLINE

• Threat Models

• Side Channels - Overview

• Instances

• A dataflow approach

29

TIMING SIDE CHANNELS - FIX
SIDE CHANNELS - INSTANCES

CAN WE FIX THIS ISSUE WITH OUR DATAFLOW APPROACH?
- Instruction transformers: how much time that instruction takes

- Block composition: the sum total of instruction times

- Merge operation: some sort of check that all paths are of comparable time?

WRAP-UP

	Slide 1: Exercise #14
	Slide 2: Exercise #14: Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Class Progress
	Slide 5: Last Time: Dataflow Deployment
	Slide 6: Implicit Flow
	Slide 7: Side Channels
	Slide 8: Overview
	Slide 9: Lecture Outline
	Slide 10: Thinking About Attacks
	Slide 11: Thinking About Attacks
	Slide 12: Unconventional Adversaries
	Slide 13: Unconventional Adversaries
	Slide 14: Lecture Outline
	Slide 15: The Basic Idea of Side Channels
	Slide 16: Unconventional Adversaries
	Slide 17: Side Channels – The Big Idea
	Slide 18: TEMPEST
	Slide 19: TEMPEST
	Slide 20: Van Eck Phreaking
	Slide 21: Side Channels – Partial Credit
	Slide 22: Covert Channels
	Slide 23: Lecture Outline
	Slide 24: Timing Side Channels
	Slide 25: Timing Side Channels
	Slide 26: Timing Side Channels - Fix
	Slide 27: Timing Side Channels - Fix
	Slide 28: Lecture Outline
	Slide 29: Timing Side Channels - Fix
	Slide 30: Wrap-up

