
EXERCISE 14

1

REVIEW: INFORMATION FLOW

Write your name and answer the following on a piece of paper

Give an example of a (pseudocode) program with an information flow that may be

considered to violate integrity. Explain why the program violates integrity.

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Thanks for the HOPE Award nomination!

CLASS PROGRESS

SHOWING SOME APPLICATIONS OF
STATIC DATAFLOW

3

4

LAST TIME: DATAFLOW DEPLOYMENT
PREVIOUSLY: INFORMATION FLOW

USING DATAFLOW IN PRACTICAL CONTEXTS

- Ex. - Looking for secret-holding variables

5

IMPLICIT FLOW
PREVIOUSLY: INFORMATION FLOW

X = source();

Y = 0;

if (X == 1){

 Y = 1;

 SINK(1);

}

if (X == 2){

 Y = 2;

}

…

Leak!

SIDE CHANNELS
EECS 677: Software Security Evaluation

Drew Davidson

OVERVIEW

CONTEMPLATE OTHER WAYS THAT
SNEAKY DATA FLOWS CAN OCCUR

7

LECTURE OUTLINE

• Threat Models

• Side Channels - Overview

• Timing

• A dataflow approach

9

THINKING ABOUT ATTACKS
RECALL: THREAT MODELS

THERE’S NO SUCH THING AS “ABSOLUTE
SECURITY”
– It’s always possible to come up with SOME

(potentially wacky) scenario where the adversary

can subvert a system

CONSIDER THE VARIOUS ATTACK CLASSES

– Denial of Service: Availability is compromised

– Exfiltration: Confidentiality policy is compromised

– Compromise: Integrity policy is compromised

10

THINKING ABOUT ATTACKS
RECALL: THREAT MODELS

THERE’S NO SUCH THING AS “ABSOLUTE
SECURITY”
– It’s always possible to come up with SOME

(potentially wacky) scenario where the adversary

can subvert a system

CONSIDER THE VARIOUS ATTACK CLASSES

– Denial of Service: Availability is compromised

– Exfiltration: Confidentiality policy is compromised

– Compromise: Integrity policy is compromised

These assumptions are
captured by a threat
model

11

UNCONVENTIONAL ADVERSARIES
RECALL: THREAT MODELS

OUR NOTIONS OF COMPLETENESS ARE ULTIMATELY TIED TO OUR ASSUMPTIONS

Deus Deceptor (Game over)

12

UNCONVENTIONAL ADVERSARIES
RECALL: THREAT MODELS

OUR NOTIONS OF COMPLETENESS ARE ULTIMATELY TIED TO OUR ASSUMPTIONS

– An adversary may have the ability to influence (or observe) phenomena that are outside of

the threat model

– Anecdote: sensor input spoofing attacks

SISA: Extra-semantic influence

Side-channels: Extra-semantic observation

LECTURE OUTLINE

• Threat Models

• Side Channels - Overview

• Timing

• A dataflow approach

14

THE BASIC IDEA OF SIDE CHANNELS
SIDE CHANNELS

ABSTRACTION IS A KEY PRINCIPLE OF COMPUTER SCIENCE!
As a programmer, you shouldn’t need to know underlying details

AS A SECURITY EXPERT, THESE DETAILS MIGHT END UP BEING IMPORTANT!
The way a program accomplishes its tasks are important, especially from a security

aspect

- How long does it take for the program to do X ?

- How hot does it make the processor when X happens?

- How much power does it draw when X happens?

15

UNCONVENTIONAL ADVERSARIES
RECALL: THREAT MODELS

(SADLY) OUR SOFTWARE NEEDS TO BE MANIFESTED IN HARDWARE

16

SIDE CHANNELS – THE BIG IDEA
SIDE CHANNELS - INSTANCES

COMPUTATION MAY HAVE EFFECTS OUTSIDE OF PROGRAM SEMANTICS
Some operations (internally) take longer based on aspects of the data

17

TEMPEST
SIDE CHANNELS – HISTORY

ELECTROMAGNETIC LEAKAGE OF KEYS

– WWII: Bell Telephone discovers

electromagnetic leakage in one-time

pad teleprinters, detectable at 100-ft

radius

– 1951: CIA rediscovers leakage,

detectable at 200-ft radius

– 1964: TEMPEST shielding protocol

established

18

TEMPEST
SIDE CHANNELS – HISTORY

ELECTROMAGNETIC LEAKAGE OF KEYS

– WWII: Bell Telephone discovers

electromagnetic leakage in one-time

pad teleprinters, detectable at 100-ft

radius

– 1951: CIA rediscovers leakage,

detectable at 200-ft radius

– 1964: TEMPEST shielding protocol

established

19

VAN ECK PHREAKING
SIDE CHANNELS – HISTORY

ELECTROMAGNETIC LEAKAGE OF
MONITORS

– Pick up the monitor’s electromagnetic

emanations that differ depending on

how the screen lights up

– Originally determined for CRT (1985),

also discovered for LCD monitors

(2004)

20

SIDE CHANNELS – PARTIAL CREDIT
SIDE CHANNELS - INSTANCES

EVEN “HINTS” ABOUT SECRET DATA CAN BE PROBLEMATIC

Assume you’re trying to guess a password

– knowing even 1 character massively reduces the search space

– knowing the length of the password reduces the search space

21

COVERT CHANNELS
SIDE CHANNELS

SOMETIMES A PROGRAM WANTS TO LEAK DATA

Exfiltration !

LECTURE OUTLINE

• Threat Models

• Side Channels - Overview

• Timing

• A dataflow approach

23

TIMING SIDE CHANNELS
SIDE CHANNELS - INSTANCES

SOME COMPUTATIONS TAKE LONGER THAN OTHERS

Some operations (internally) take longer based on aspects of the data

bool checkPW(const char * given){

 const char * expected = “12345”;

 int gLen = strlen(given);

 int eLen = strlen(expected);

 if (gLen != eLen){ return false; }

 for (int i = 0; i < eLen; i++){

 if (given[i] != expected[i]){

 return false;

 }

 }

 return true;

}

24

TIMING SIDE CHANNELS
SIDE CHANNELS - INSTANCES

SOME COMPUTATIONS TAKE LONGER THAN OTHERS

Some operations (internally) take longer based on aspects of the data

THREAT MODEL

Interactive, low-latency*, black-box access to the program, precise timer

*: May be overcome with more samples

ProgramAdversary

Password attempts

timing

25

TIMING SIDE CHANNELS - FIX
SIDE CHANNELS - INSTANCES

bool checkPW(const char * given){

 const char * expected = “12345”;

 int gLen = strlen(given);

 int eLen = strlen(expected);

 if (gLen != eLen){ return false; }

 for (int i = 0; i < eLen; i++){

 if (given[i] != expected[i]){

 return false;

 }

 }

 return true;

}

bool checkPW(const char * given){

 const char * expected = “12345”;

 int gLen = strlen(given);

 int eLen = strlen(expected);

 bool ok = true;

 if (gLen != eLen){ ok = false; }

 for (int i = 0; i < eLen; i++){

 int gIdx = math.min(gLen - 1, i);

 if (given[gIdx] != expected[i]){

 ok = false;

 }

 }

 return ok;

}

26

TIMING SIDE CHANNELS - FIX
SIDE CHANNELS - INSTANCES

LIMITATIONS OF UNIFORM EXECUTION

- Necessarily slow down your computation to the worst case

- May require some pretty precise understanding of timing

- May not always be obvious what the worst-case even is

LECTURE OUTLINE

• Threat Models

• Side Channels - Overview

• Instances

• A dataflow approach

28

TIMING SIDE CHANNELS - FIX
SIDE CHANNELS - INSTANCES

CAN WE FIX THIS ISSUE WITH OUR DATAFLOW APPROACH?
- Instruction transformers: how much time that instruction takes

- Block composition: the sum total of instruction times

- Merge operation: some sort of check that all paths are of comparable time?

WRAP-UP

	Slide 1: Exercise 14
	Slide 2: Administrivia and Announcements
	Slide 3: Class Progress
	Slide 4: Last Time: Dataflow Deployment
	Slide 5: Implicit Flow
	Slide 6: Side Channels
	Slide 7: Overview
	Slide 8: Lecture Outline
	Slide 9: Thinking About Attacks
	Slide 10: Thinking About Attacks
	Slide 11: Unconventional Adversaries
	Slide 12: Unconventional Adversaries
	Slide 13: Lecture Outline
	Slide 14: The Basic Idea of Side Channels
	Slide 15: Unconventional Adversaries
	Slide 16: Side Channels – The Big Idea
	Slide 17: TEMPEST
	Slide 18: TEMPEST
	Slide 19: Van Eck Phreaking
	Slide 20: Side Channels – Partial Credit
	Slide 21: Covert Channels
	Slide 22: Lecture Outline
	Slide 23: Timing Side Channels
	Slide 24: Timing Side Channels
	Slide 25: Timing Side Channels - Fix
	Slide 26: Timing Side Channels - Fix
	Slide 27: Lecture Outline
	Slide 28: Timing Side Channels - Fix
	Slide 29: Wrap-up

