
EXERCISE #8

1

COMPUTABILITY REVIEW

Write your name and answer the following on a piece of paper

Consider a simple bug-finding analysis that looks for null pointer deferences in C 

programs. The analysis raises an alert on any program that has ANY pointer 

operation, and does not raise an alert on any other program.

Is this analysis sound, complete, neither, or both? Justify your answer.
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LAST TIME: ANALYSIS DEFINITIONS
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REVIEW: COMPUTABILITY

Analysis Target – The system being analyzed
• For us this will usually be a software program

Analysis Engine – The system doing analysis
• For us this will usually be a software program

Analysis Goal – The phenomenon we are detecting
• The existence of a certain (program) behavior?
• The absence of a certain (program) behavior?



LAST TIME: ANALYSIS LIMITS
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REVIEW: COMPUTABILITY

The limits of computability
• The Halting Problem: No decision procedure for halting
• Rice’s Theorem: The Halting Problem implies no 

decision procedure for any reachability problem

Analysis without decision procedures
• Approximation
• How do we approximate? Soundness / Completeness



LAST TIME: ANALYSIS GUARANTEES
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REVIEW: COMPUTABILITY

NO analysis can be both sound and complete

Building an analysis that is either sound or 
complete is trivial
• Complete – Always report positive, no 

false negatives
• Sound – Always report negative, no false 

positives



LECTURE OUTLINE

• The Big Idea

• Program Guarantees

• Analysis Specificity

• Dataflow analysis
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HIGH-LEVEL DEFINITION
STATIC ANALYSIS –  THE BIG IDEA

Static analysis – analysis that is done without running the program
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ANALYSIS IN CONTRAST
STATIC ANALYSIS PHILOSOPHY

Static analysis – analysis that is done without running the program

Dynamic analysis – analysis that is done with running the program

Simplest example - testing
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STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

Global view of every instruction in the program
• Provide result about what a program MIGHT do

A global view (of the program)
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STATIC ANALYSIS FOR 
QUALITY ASSURANCE

STATIC ANALYSIS PHILOSOPHY

Filter out “trivial” code issues

Provide insights to aid manual analysis



“TRIVIAL” SYNTAX ANALYSIS
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OVERVIEW: STATIC ANALYSIS

Some troubling behavior of a program may be 
discoverable via simply observing syntactic 
structure

int main(int argc, const char * argv[]){

  const char * password = argv[1];

  if (password == “supersecret”){

     authenticate();

  }

}



INSIGHTS
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OVERVIEW: STATIC ANALYSIS

Software engineering “code smells” / stats

Cyclomatic complexity

Long functions

Use of the forbidden / arcane constructs



LECTURE OUTLINE

• The Big Idea

• Program Guarantees

• Analysis Specificity

• Dataflow analysis
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STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

Provide assurances about what a program 
will NEVER or ALWAYS do
• Static analysis might report EVERY program that 

(possibly) has a null-pointer dereference
• Static analysis might certify EVERY program that 

(definitely) is null-pointer deference free

“Hey! Those are the 

same thing!”

The true power of static analysis: one-sided error
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STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

Program verifier (detect “good” programs) Bug finder (detect “bad” programs)

Complete (no FNs) – all good programs are 
reported
Sound (no FPs) – all bad programs are 
unreported

Complete (no FNs) – all bad programs are 
reported
Sound (no FPs) – all good programs are 
unreported

Provide assurances about what a program 
will NEVER or ALWAYS do
• Static analysis might report EVERY program that 

(possibly) has a null-pointer dereference
• Static analysis might certify EVERY program that 

(definitely) is null-pointer deference free

“Hey! Those are the 

same thing!”
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STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

Program verifier (detect “good” programs) Bug finder (detect “bad” programs)

Complete (no FNs) – all good programs are 
reported
Sound (no FPs) – all bad programs are 
unreported

Complete (no FNs) – all bad programs are 
reported
Sound (no FPs) – all good programs are 
unreported

For security analysis, we want to lock out “bad” programs

(even at the cost of locking out some “good” programs)



LECTURE OUTLINE

• The Big Idea

• Program Guarantees

• Analysis Specificity

• Dataflow analysis
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CONSIDER PROGRAM CONFIGURATION
ANALYSIS SPECIFICITY

The good news about static analysis:
You can see beyond the instructions 
that are executed in an individual 
trace

The bad news about static analysis:
You need to construct the 
conditions/circumstances/context in 
which those instructions are executed

*p = 2

You exist in the context of all in which 
you live and what came before you
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WRASSLIN’ WITH STATE SPACE
ANALYSIS SPECIFICITY

State space: the set of all possible 
configurations of the analysis target

Naïve state space representation: 
enumerate all configurations of a 
program
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HISTORY: HARDWARE MODEL CHECKING
STATIC ANALYSIS –  ANALYSIS SPECIFICITY

Extract a (finite) state system that 
approximates the analysis target
Example:
• States: configuration of the system
• Edges: transitions within the system

Check if the system can violate some 
correctness property

Each state indicates the value of a memory bit
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HISTORY: HARDWARE MODEL CHECKING
STATIC ANALYSIS –  ANALYSIS SPECIFICITY

State space

(artist’s rendition)

State space explosion!
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WRASSLIN’ WITH STATE SPACE
ANALYSIS SPECIFICITY

State space: the set of all possible 
configurations of the analysis target

Naïve state space representation: 
enumerate all configurations of a 
program

Practical state space representation: 
Summarize sets of configurations of a 
program

Never gonna work for large analysis targets
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ASIDE: SOFTWARE MODEL CHECKING
ANALYSIS SPECIFICITY

Extract a (finite) state system that 
approximates the analysis target
• States: configurations of the system
• Edges: transitions within the system

Check if the system can violate some 
correctness property

Each state indicates a set of values 

or the truth of some abstract predicate
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ASIDE: CEGAR
ANALYSIS SPECIFICITY

Counterexample-guided abstraction 
refinement
• Begin with a coarse, over-approximate 

abstraction of the system
• Check system correctness
• If a violation is reported, verify it!

• If its a true positive – report it
• If it’s a false positive – refine the model to exclude it 

and check the new model
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ASIDE: MODEL CHECKING IS GREAT! 
ANALYSIS SPECIFICITY

Super-interesting approach to program analysis

Edmund Clarke: Turing 

Award co-winner 

for model checking

Some scalability issues

Not the focus of our course
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STATE SPACE SUMMARIZATION
STATIC ANALYSIS: ANALYSIS SPECIFICITY

Lesson learned: The way we choose to summarize 

state space makes or breaks our analysis

• Too much summarization leads to approximation

• Too little summarization leads to state space 

explosion



LECTURE OUTLINE

• The Big Idea

• Program Guarantees

• Analysis Specificity

• Dataflow analysis



DATAFLOW INTUITION
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STATIC ANALYSIS: DATAFLOW ANALYSIS

Capture the effect of each statement on 
the program’s data
• Treat each instruction as a data 

transformer 
• Compose the effect of multiple data 

transformers to elicit composite effects
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COMPOSITE EFFECTS
STATIC ANALYSIS: DATAFLOW

Dataflow analysis comes in a variety of 
configurations that stake out different 
precision/efficiency tradeoffs
• Maintain sound verification / complete 

bugfinding
• Consider sets of values that may not 

actually co-exist 
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FLOW-INSENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

Consider the effect of each statement 
without respecting the order of execution
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FLOW-INSENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

Is a function FOO called from within a program?
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PATH-SENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

Consider the effect of each statement with 
respect to a unique program path
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PATH-SENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

int f(bool b) {

    Obj * o = null;

    int v = 2;

    if (b) {

        o = new Obj ();

        v = rand_int(); 

    }

    if (v == 2){

        o->setInvalid()

    }

    return o->property(); 

}
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FLOW-SENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

Consider the effect of each statement with 
respect to order in the Control-Flow Graph
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FLOW-SENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

int f(bool b) {

    Obj * o = null;

    int v = 2;

    if (b) {

        o = new Obj ();

        v = rand_int(); 

    }

    if (v == 2){

        o->setInvalid()

    }

    return o->property(); 

}



ABSTRACT INTERPRETATION
37

CATEGORIZING ANALYSES

(Over)approximate the state of the program
(Over)approximate the domain of values



LECTURE END!

• The Big Idea

• Program Guarantees

• Analysis Specificity

• Dataflow analysis



NEXT TIME

SYSTEMATIZING FLOW-SENSITIVE 
ANALYSES 

39
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