
EXERCISE #8

1

COMPUTABILITY REVIEW

Write your name and answer the following on a piece of paper

Consider a simple bug-finding analysis that looks for null pointer deferences in C

programs. The analysis raises an alert on any program that has ANY pointer

operation, and does not raise an alert on any other program.

Is this analysis sound, complete, neither, or both? Justify your answer.

STATIC ANALYSIS
EECS 677: Software Security Evaluation

Drew Davidson

ADMINISTRIVIA
AND
ANNOUNCEMENTS

LAST TIME: ANALYSIS DEFINITIONS
4

REVIEW: COMPUTABILITY

Analysis Target – The system being analyzed
• For us this will usually be a software program

Analysis Engine – The system doing analysis
• For us this will usually be a software program

Analysis Goal – The phenomenon we are detecting
• The existence of a certain (program) behavior?
• The absence of a certain (program) behavior?

LAST TIME: ANALYSIS LIMITS
5

REVIEW: COMPUTABILITY

The limits of computability
• The Halting Problem: No decision procedure for halting
• Rice’s Theorem: The Halting Problem implies no

decision procedure for any reachability problem

Analysis without decision procedures
• Approximation
• How do we approximate? Soundness / Completeness

LAST TIME: ANALYSIS GUARANTEES
6

REVIEW: COMPUTABILITY

NO analysis can be both sound and complete

Building an analysis that is either sound or
complete is trivial
• Complete – Always report positive, no

false negatives
• Sound – Always report negative, no false

positives

LECTURE OUTLINE

• The Big Idea

• Program Guarantees

• Analysis Specificity

• Dataflow analysis

8

HIGH-LEVEL DEFINITION
STATIC ANALYSIS – THE BIG IDEA

Static analysis – analysis that is done without running the program

9

ANALYSIS IN CONTRAST
STATIC ANALYSIS PHILOSOPHY

Static analysis – analysis that is done without running the program

Dynamic analysis – analysis that is done with running the program

Simplest example - testing

10

STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

Global view of every instruction in the program
• Provide result about what a program MIGHT do

A global view (of the program)

11

STATIC ANALYSIS FOR
QUALITY ASSURANCE

STATIC ANALYSIS PHILOSOPHY

Filter out “trivial” code issues

Provide insights to aid manual analysis

“TRIVIAL” SYNTAX ANALYSIS
12

OVERVIEW: STATIC ANALYSIS

Some troubling behavior of a program may be
discoverable via simply observing syntactic
structure

int main(int argc, const char * argv[]){

 const char * password = argv[1];

 if (password == “supersecret”){

 authenticate();

 }

}

INSIGHTS
13

OVERVIEW: STATIC ANALYSIS

Software engineering “code smells” / stats

Cyclomatic complexity

Long functions

Use of the forbidden / arcane constructs

LECTURE OUTLINE

• The Big Idea

• Program Guarantees

• Analysis Specificity

• Dataflow analysis

15

STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

Provide assurances about what a program
will NEVER or ALWAYS do
• Static analysis might report EVERY program that

(possibly) has a null-pointer dereference
• Static analysis might certify EVERY program that

(definitely) is null-pointer deference free

“Hey! Those are the

same thing!”

The true power of static analysis: one-sided error

16

STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

Program verifier (detect “good” programs) Bug finder (detect “bad” programs)

Complete (no FNs) – all good programs are
reported
Sound (no FPs) – all bad programs are
unreported

Complete (no FNs) – all bad programs are
reported
Sound (no FPs) – all good programs are
unreported

Provide assurances about what a program
will NEVER or ALWAYS do
• Static analysis might report EVERY program that

(possibly) has a null-pointer dereference
• Static analysis might certify EVERY program that

(definitely) is null-pointer deference free

“Hey! Those are the

same thing!”

17

STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

Program verifier (detect “good” programs) Bug finder (detect “bad” programs)

Complete (no FNs) – all good programs are
reported
Sound (no FPs) – all bad programs are
unreported

Complete (no FNs) – all bad programs are
reported
Sound (no FPs) – all good programs are
unreported

For security analysis, we want to lock out “bad” programs

(even at the cost of locking out some “good” programs)

LECTURE OUTLINE

• The Big Idea

• Program Guarantees

• Analysis Specificity

• Dataflow analysis

19

CONSIDER PROGRAM CONFIGURATION
ANALYSIS SPECIFICITY

The good news about static analysis:
You can see beyond the instructions
that are executed in an individual
trace

The bad news about static analysis:
You need to construct the
conditions/circumstances/context in
which those instructions are executed

*p = 2

You exist in the context of all in which
you live and what came before you

20

WRASSLIN’ WITH STATE SPACE
ANALYSIS SPECIFICITY

State space: the set of all possible
configurations of the analysis target

Naïve state space representation:
enumerate all configurations of a
program

21

HISTORY: HARDWARE MODEL CHECKING
STATIC ANALYSIS – ANALYSIS SPECIFICITY

Extract a (finite) state system that
approximates the analysis target
Example:
• States: configuration of the system
• Edges: transitions within the system

Check if the system can violate some
correctness property

Each state indicates the value of a memory bit

22

HISTORY: HARDWARE MODEL CHECKING
STATIC ANALYSIS – ANALYSIS SPECIFICITY

State space

(artist’s rendition)

State space explosion!

23

WRASSLIN’ WITH STATE SPACE
ANALYSIS SPECIFICITY

State space: the set of all possible
configurations of the analysis target

Naïve state space representation:
enumerate all configurations of a
program

Practical state space representation:
Summarize sets of configurations of a
program

Never gonna work for large analysis targets

24

ASIDE: SOFTWARE MODEL CHECKING
ANALYSIS SPECIFICITY

Extract a (finite) state system that
approximates the analysis target
• States: configurations of the system
• Edges: transitions within the system

Check if the system can violate some
correctness property

Each state indicates a set of values

or the truth of some abstract predicate

25

ASIDE: CEGAR
ANALYSIS SPECIFICITY

Counterexample-guided abstraction
refinement
• Begin with a coarse, over-approximate

abstraction of the system
• Check system correctness
• If a violation is reported, verify it!

• If its a true positive – report it
• If it’s a false positive – refine the model to exclude it

and check the new model

26

ASIDE: MODEL CHECKING IS GREAT!
ANALYSIS SPECIFICITY

Super-interesting approach to program analysis

Edmund Clarke: Turing

Award co-winner

for model checking

Some scalability issues

Not the focus of our course

27

STATE SPACE SUMMARIZATION
STATIC ANALYSIS: ANALYSIS SPECIFICITY

Lesson learned: The way we choose to summarize

state space makes or breaks our analysis

• Too much summarization leads to approximation

• Too little summarization leads to state space

explosion

LECTURE OUTLINE

• The Big Idea

• Program Guarantees

• Analysis Specificity

• Dataflow analysis

DATAFLOW INTUITION
29

STATIC ANALYSIS: DATAFLOW ANALYSIS

Capture the effect of each statement on
the program’s data
• Treat each instruction as a data

transformer
• Compose the effect of multiple data

transformers to elicit composite effects

30

COMPOSITE EFFECTS
STATIC ANALYSIS: DATAFLOW

Dataflow analysis comes in a variety of
configurations that stake out different
precision/efficiency tradeoffs
• Maintain sound verification / complete

bugfinding
• Consider sets of values that may not

actually co-exist

31

FLOW-INSENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

Consider the effect of each statement
without respecting the order of execution

32

FLOW-INSENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

Is a function FOO called from within a program?

33

PATH-SENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

Consider the effect of each statement with
respect to a unique program path

34

PATH-SENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

int f(bool b) {

 Obj * o = null;

 int v = 2;

 if (b) {

 o = new Obj ();

 v = rand_int();

 }

 if (v == 2){

 o->setInvalid()

 }

 return o->property();

}

35

FLOW-SENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

Consider the effect of each statement with
respect to order in the Control-Flow Graph

36

FLOW-SENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

int f(bool b) {

 Obj * o = null;

 int v = 2;

 if (b) {

 o = new Obj ();

 v = rand_int();

 }

 if (v == 2){

 o->setInvalid()

 }

 return o->property();

}

ABSTRACT INTERPRETATION
37

CATEGORIZING ANALYSES

(Over)approximate the state of the program
(Over)approximate the domain of values

LECTURE END!

• The Big Idea

• Program Guarantees

• Analysis Specificity

• Dataflow analysis

NEXT TIME

SYSTEMATIZING FLOW-SENSITIVE
ANALYSES

39

	Slide 1: ExerCise #8
	Slide 2: Static Analysis
	Slide 3: Administrivia and Announcements
	Slide 4: Last Time: Analysis Definitions
	Slide 5: Last Time: Analysis Limits
	Slide 6: Last Time: Analysis Guarantees
	Slide 7: Lecture Outline
	Slide 8: High-Level Definition
	Slide 9: Analysis in Contrast
	Slide 10: STATIC Analysis - Opportunities
	Slide 11: Static Analysis for Quality Assurance
	Slide 12: “Trivial” Syntax Analysis
	Slide 13: Insights
	Slide 14: Lecture Outline
	Slide 15: STATIC Analysis - Opportunities
	Slide 16: STATIC Analysis - Opportunities
	Slide 17: STATIC Analysis - Opportunities
	Slide 18: Lecture Outline
	Slide 19: Consider Program Configuration
	Slide 20: Wrasslin’ With State Space
	Slide 21: History: Hardware Model Checking
	Slide 22: History: Hardware Model Checking
	Slide 23: Wrasslin’ With State Space
	Slide 24: Aside: Software Model Checking
	Slide 25: Aside: CEGAR
	Slide 26: Aside: Model Checking Is great!
	Slide 27: State Space Summarization
	Slide 28: Lecture Outline
	Slide 29: DataFLOW Intuition
	Slide 30: Composite Effects
	Slide 31: Flow-Insensitive Dataflow Analysis
	Slide 32: Flow-Insensitive Dataflow Analysis
	Slide 33: Path-Sensitive Dataflow Analysis
	Slide 34: Path-Sensitive Dataflow Analysis
	Slide 35: Flow-Sensitive Dataflow Analysis
	Slide 36: Flow-Sensitive Dataflow Analysis
	Slide 37: Abstract Interpretation
	Slide 38: Lecture End!
	Slide 39: Next TiME

