EXERCISE #7

COMPUTABILITY REVIEW

Write your name and answer the following on a piece of paper

Consider a simple bug-finding analysis that looks for null pointer deferences in C
programs. The analysis raises an alert on any program that has ANY pointer
operation, and does not raise an alert on any other program.

Is this analysis sound, complete, neither, or both? Justify your answer.

\@%"f

STATIC ANALYSIS

EECS 677: Software Security Evaluation

Drew Davidson

ADMINISTRIVIA
AND
ANNOUNCEMENTS

- pub
Pj)\ B (ww 0%

LAST TIME: ANALYSIS DEFINITIONS

REVIEW: COMPUTABILITY

Analysis Target — The system being analyzed -
e For us this will usually be a software program

Analysis Engine — The system doing analysis
* For us this will usually be a software program

Analysis Goal — The phenomenon we are detecting
 The existence of a certain (program) behavior?
 The absence of a certain (program) behavior?

LAST TIME: ANALYSIS LIMITS

REVIEW: COMPUTABILITY

The limits of computability

* The Halting Problem: No decision procedure for halting
* Rice’s Theorem: The Halting Problem implies no
decision procedure for any reachability problem

Analysis without decision procedures
* Approximation
 How do we approximate? Soundness / Completeness

LAST TIME: ANALYSIS DESIGN

REVIEW: COMPUTABILITY

NO analysis can be both sound and complete

POBODY’S

NERFECT

Building an analysis that is either sound or

complete is trivial

e Complete — Always report positive, no
false negatives

 Sound — Always report negative, no false
positives

THIS TIME: WORKING WITH CONSTRAINTS

TODAY’S LECTURE

Given the limitations of analysis, how
might we still provide useful tools for
software security evaluation?

Static Analysis, get it?

LECTURE OUTLINE

Contextualizing Rice’s

Theorem
Program Guarantees
Analysis Specificity

Dataflow analysis

CONTEXTUALIZING RICE’S THEOREM

Alllnon- tnwalIsemantlc properties
of programs are undecidable.

j/k: Rice’s Theorem is named
after Dr. Henry Gordon Rice

RICE’S THEOREM (NON)ASSERTIONS

Excludes properties that are Excludes properties that do not
true or false for every progrﬂmw regard program's behavior

Notably, the theorem

ignores syntactic
properties

SYNTACTIC STATIC ANALYSIS

CONTEXTUALIZING RICE’S THEOREM

Some troubling behavior of a program may be
discoverable via simply observing its text

int main(int argc, const char * argv[]) {
const char * password = argv|[l];
int good;
1f (password == “supersecret”) {
good = 1;
} else {
good = 0;

}

authenticate (good) ;

INSIGHTS

CONTEXTUALIZING STATIC ANALYSIS

Software engineering “code smells” / stats

Use of the forbidden / arcane constructs

Cyclomatic complexity

Long functions

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, slternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5,23, 5.24

EpiTon:

For a number of years [have been x'umhnr vmh (he observation

that the quality of p is a de of L

dynamie progress i3 only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat 4
or repeat A until B). Logically spoaking, such clauses are now
mpﬂﬂuom. because we can express repetition with the aid of

deneity of go to stalemenu in the programs thoy produce. More
recently I discovered why the use of the go 1o statement has such
disastrous cffects, and I beeame convinced that the go to state.
meat should be abolished from all “higher level” programming

For reasons of realism I don’t wish to ex-
clude lhcm on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction’
makes us well equipped to retain our intellectual grasp on the

langunges (i.e. everything except, g plain chine code).
At’that time I did not attach too much importance to this dis.
covery; I now submit my considerations for publication beeanse
in very recent discussions in which the subjoct turned up, 1 have
been urged to do s0.

My first remark is that, slthough the programmer’s activity
ends when he has constructed n correet program, the process
taking place under control of his program is the true subject
matter of his netivity, for it in this proceas that has to accomplish
the desired effect; it is this process that in its dynamie behavior
has to satisfy the desiecd specifications. Yet, once the program has
been made, the “making’ of the corresponding process is dele-
gated to the machine.

My second remark is that our intellectual powers are rather
geared to maater static relations and that our powers to visualize
processes evolying in time are relatively poorly developed. For
that reason we should do (as wise programmers aware of our

generated by repetition clzuses, With the inclusion of
the repetition cluuses textual indices are no longer sufficient to
deseribe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called “*dy-
namic index,” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) muy be applicd nestedly, we find that now the
progress of the proceas ean alwaya be uniquely characterized by a
(mixed) sequence of textual and/or dynamic indices,

The main point is that the values of these indices are outside
programmer's control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent eoordinates in which
to describe the progress of the procoss,

Why do we need such independent coordinates? The reason
is—and this seems to be inherent to sequential processes—that
we can interpret the value of a variable only with respect to the

limitations) our utmost to shorten the ! gap b n
tho static program and the dynamic process, to make the cor-
respondence between the progrum (spread out in text space) and
the process (spread oul in time) as teivial as pogsible.

Let us now consider how wo can chsracterize the progress of a
process. (You may think sbout this question in a very concrete
manner: suppose that & prooess, considered s 1 time succession
of actions, is stopped sfter an arbitrary action, what data do we
Bavo to fix in order that we can redo the process until the very
same point?) If the progeam text is a pure concmemmon of, sny

of the process. If we wish to count the number, n say, of
people in an initially empty room, we can achieve this by increas-
ing n by one whenever we see someone entering the room. In the
in-between moment that we have observed someone entering the
ropm but have not yet performed the subsequent increase of n,
its value equals the number of people in the room minus onet
The unbridled use of the go to statement has an immediate
consequence that it becomes terribly hard to find & meaningful set
of eacrdinates in which to describe the process progress. Usually,

people take into account as well the values of some well chosen
Bl

asignment statements (for the purpose of this d
a8 the descriptions of single actions) it is sufficient to pmm in the
program text to a point between two successive action descrip-
tiony. (In the abusence of go to statements 1 can permit mysclf the
syntactic ambiguity in the last three words of the pmvmus sen-
tence: if we parse them as ive (action d)" we
mn uuu-onuve in text space; |. Wwe parse a8 ““(successive action)

' we mean in time.) Lot us call such a
pointer to a suitable place in the text a “textual index.”

Whea we include conditional clauses (if B then 4), aliernative
clauses (if B then Al else A2), choice clauses as introduced by
C. A. R. Hoare (easeli] 0f(A1, A2, -+ , An)), or conditional expms-
sions as introduced by J. Mc(‘anhy (Bl — B, B2 — E2, .

Bn — En), the fact remains that the progress of the process n--
maing charneterized by a single textual index.

As soon as we include in our language procedures we must admit
that a single textual index is no longer sufficient, In the case that
® textual index points to the interior of a procedure body the

Volume 11 / Number 3 / March, 1968

Edgar Dijkstra: Go To Statement Considered Harmful

wari but this i3 out of the question because it is relative 1o
the progress that the meaning of these values is 1o be ergtood !
With the go to statement oce can, of course, still describe the
progress uniquely by a counter counting the number of actions
performed since progrim start (viz. a kind of normalized clock).

The difficulty is that such = coordinate, ahhough umque is uuedy

helpful. In such a system it b
comphcawd affair to define all those points of pmgren where.
aay, n equals the number of persons in the room minus one!

The go to statement as it stands is just too primitive; it is too
much an invitation to make a mess ol oncs program. One can
rogard and approei the clauses {ored as bridling its use, I
do not claim that, the clauses mentioned are exhaustive in the sense
that they will satisfy all noeds, but whatever clauses are suggested
(e.g. nbonlon clnuaus) they should satisfly the requirement that a
A system can be maintained to
describe the process in n holpful and manageable way:

It is hard to end this with a fair uknowledgmenl. Am [to

Communications of the ACM 147

12

RICE’S THEOREM (NON)ASSERTIONS

CONTEXTUALIZING RICE’S THEOREM

Excludes properties that are
true or false for every program

>

Excludes properties that do not
regard program's behavior

All

Notably, the theorem

non—triviaIIsemantic properties ignores syntactic

of programs are|undecidable.

j/k: Rice’s Theorem is named
after Dr. Henry Gordon Rice

properties

S ’
ZNO decision procedure: that’s a high bar!

We can design analyses
that work perfectly in
some cases, but admit
uncertainty in others

A\

5
/
X

LECTURE OUTLINE N
 Contextualizing Rice’s N

Theorem /‘
* Program Guarantees \)
* Preciseness vs Efficiency \\Y

* Dataflow analysis . “'
N

STATIC ANALYSIS - OPPORTUNITIES

STATIC ANALYSIS PHILOSOPHY

WARNING
PROTECTED BY
C Total $
Protection

HOME SECURITY
SPECIALIST

888-618-4546
856-981-6449

For security analysis, we want to lock out “bad” programs
(even at the cost of locking out some “good” programs)

Provide assurances about what a program

will NEVER or ALWAYS do

e Static analysis might report EVERY program that
(possibly) has a problem

e Static analysis might certify EVERY program that
(definitely) has no problem

14

STATIC ANALYSIS - OPPORTUNITIES

STATIC ANALYSIS PHILOSOPHY

Provide assurances about what a program

will NEVER or ALWAYS do

* Static analysis might report EVERY program that
(possibly) has a problem

» Static analysis might certify EVERY program that
(definitely) has no problem

Complete bug finder — no flag

Target

Analysis
Program

SRV

Complete bug finder - flag

lump “unsure” into “bad”

15

STATIC ANALYSIS - OPPORTUNITIES

STATIC ANALYSIS PHILOSOPHY

Complete bug finder — no flag

Target
Program

R

Analysis

Complete bug finder - flag

lump “unsure” into “bad”

Goal: minimize the uncertainty

16

LECTURE OUTLINE

Contextualizing Rice’s

Theorem

Program Guarantees

Analysis over CFG

Preciseness vs Efficiency

STATIC ANALYSIS - OPPORTUNITIES

STATIC ANALYSIS PHILOSOPHY

Complete bug finder — no flag

Target
Program

R

Analysis

Complete bug finder - flag

lump “unsure” into “bad”

Goal: minimize the uncertainty
(comes in part from reachability)

Key idea: Build the Control-Flow Graph,
explore routes through the graph to
(over)approximate reachability

18

In general, an iterative process:

Pass over instructions, mark leaders/ terminators
Might create new leaders / terminators,
so keep doing passes until no more found

Build basic blocks by boundaries

Connect control source to control destination

Refine based on analyses

For LLVM Bitcode, even easier

All blocks (except possibly entry) have labels
Connect control source to control destination
One deviation from LLVM: split after a call!
Refine based on analyses

BUILDING THE CFG

CONTROL FLOW GRAPH ANALYSIS

We Can Build It!

,ﬁ'a
-
-
SV o
-
-

19

CFG NOTATION

STATIC ANALYSIS PHILOSOPHY

We’'ll enforce a couple of constraints on
the CFG

It must be a hammock —
One entry point, one exit block

Call sites and return points are connected via a
special link edge

20

VISUALIZING THE CFG: DOT

CONTROL FLOW GRAPH ANALYSIS

FLOW-SENSITIVE ANALYSIS RELIES HEAVILY ON THE CONTROL-FLOW GRAPH
CONCEPT
It’s pretty helpful to have a CFG in hand

Good news! You know how to automatically induce the CFG structure

Gooder news! There’s a format to visualize CFGs

File graph.dot cmdline output
digraph name { dot -Tpdf graph.dot -o graph.pdf

nodeA [..];

nodeB [..];

nodeA -> nodeB [..];

EXISTING CFG TOOLS

CONTROL FLOW GRAPH ANALYSIS

Good news! You know how to automatically induce the CFG structure

Gooder news! There’s a format to visualize CFGs

Goodest news! llvm can output a dot-format CFG for .lI-format code

opt -dot-cfg prog.ll > /dev/null

opt -passes=dot-cfg prog.ll > /dev/null

OVERAPPROXIMATING REACHABILITY

STATIC ANALYSIS PHILOSOPHY

1 define i32 O {

2 ret i32 1

3 blk3:

4 = sdiv i32 1, ©
5 ret i32

6 }

define i32 (i32
= icmp sgt i32
label

br il

I

blkTrue:
ret i32 1

1
2
3
y
5
6
7

8 blkFalse:

9 ret 132 2

10

11 blkAfter:

12 = sdiv i32 1, ©
13 ret i32

14 }

LECTURE OUTLINE

Contextualizing Rice’s

Theorem
Program Guarantees

Analysis over CFG

Preciseness vs Efficiency

return arg;

INFEASIBLE PATHS

STATIC ANALYSIS: DATAFLOW

Is this program buggy?
Just check every path(?!?!1?!)

define i32 @f(i32) 1
entry:
= add i32 0, 1
= add i32 @, ©
= icmp sgt i32
br il , Llabel
blockl:
= add 1
= add i
br label

block2:
phi i32 [.

phi i32 [.
= mul 132
= icmp ne i32
br il , Llabel

block3:
= sdiv i32 2, ©
br label

blockd:
= phi 132 [
ret i32

3

entry
‘_
blockl
bIo;;<2
block3
bIot:k4

WRASSLIN’ WITH STATE SPACE

PRECISENESS VS EFFICIENCY

State space: the set of all possible
configurations of the target model

Naive state space representation:
Consider each path separately

26

PATH-SENSITIVE DATAFLOW ANALYSIS

STATIC ANALYSIS: DATAFLOW

entry:
How many paths are there in this program? br label %loop
define i32
entry:
br label
loop: false
= phi i32 [l
= add i32
= call i32 (...) Loop:
b i1 o m“'? fgbﬁz %argcloin = phi i32 [%argc, %entry] , [%argcinc, %loop]
%argcinc = add i32 %argcloin, -1
after: 0 — ; .
- sdiv i32 2, /o.mycha.r = call |3.2 (...) @getchar();
ret i32 %1s97 = icmp eq 132 %mychar, 97
¥ Br il %is97, label %after, label %loop
declare i32
extern int getchar(); true‘
int main(int argc){ after:
int c; N .
32 {c . %res = sdiv 132 2, %argcloin
.I‘gc——; 0, H
¢ = getchar(); /oOI’(:JCchln
} while (c != 'a'); ret 132 %res

return 2 / argc;

WRASSLIN’ WITH STATE SPACE

PRECISENESS VS EFFICIENCY

State space: the set of all possible
configurations of the analysis target

Naive state space representation:
enumerate all configurations of a
program
* For nbits-efmgmory: 2" states

- fz/h\ﬂﬁ / Q n j)f\ m}
Practical state space representation:
Summarize sets of configurations of a
program

28

The power of static analysis:
You can see beyond the code that is
executed in an individual trace

The responsibility of static analysis:
You need to consider the
conditions/circumstances/context in
which code would be executed while
keeping state space small

THE POWER OF STATIC ANALYSIS

ANALYSIS SPECIFICITY

COMES GREAT
RESPONSIBILITY...

WITH GREAT POWER

29

OVERAPPROXIMATING REACHABILITY

STATIC ANALYSIS PHILOSOPHY

30

SSSSSSSSSSSSSSSSSSSSSS

	Slide 1: Exercise #7
	Slide 2: Static Analysis
	Slide 3: Administrivia and Announcements
	Slide 4: Last Time: Analysis Definitions
	Slide 5: Last Time: Analysis Limits
	Slide 6: Last Time: Analysis Design
	Slide 7: This Time: Working With Constraints
	Slide 8: Lecture Outline
	Slide 9: Rice’s Theorem (Non)assertions
	Slide 10: Syntactic Static Analysis
	Slide 11: Insights
	Slide 12: Rice’s Theorem (Non)assertions
	Slide 13: Lecture Outline
	Slide 14: STATIC Analysis - Opportunities
	Slide 15: STATIC Analysis - Opportunities
	Slide 16: STATIC Analysis - Opportunities
	Slide 17: Lecture Outline
	Slide 18: STATIC Analysis - Opportunities
	Slide 19: Building the CFG
	Slide 20: CFG Notation
	Slide 21: Visualizing the CFG: DOT
	Slide 22: Existing CFG Tools
	Slide 23: Overapproximating Reachability
	Slide 24: Lecture Outline
	Slide 25: Infeasible Paths
	Slide 26: Wrasslin’ With State Space
	Slide 27: Path-Sensitive Dataflow Analysis
	Slide 28: Wrasslin’ With State Space
	Slide 29: The Power of Static Analysis
	Slide 30: Overapproximating Reachability
	Slide 31: Next TiME

