
EXERCISE #7

1

COMPUTABILITY REVIEW

Write your name and answer the following on a piece of paper

Consider a simple bug-finding analysis that looks for null pointer deferences in C

programs. The analysis raises an alert on any program that has ANY pointer

operation, and does not raise an alert on any other program.

Is this analysis sound, complete, neither, or both? Justify your answer.

STATIC ANALYSIS
EECS 677: Software Security Evaluation

Drew Davidson

ADMINISTRIVIA
AND
ANNOUNCEMENTS

LAST TIME: ANALYSIS DEFINITIONS
4

REVIEW: COMPUTABILITY

Analysis Target – The system being analyzed
• For us this will usually be a software program

Analysis Engine – The system doing analysis
• For us this will usually be a software program

Analysis Goal – The phenomenon we are detecting
• The existence of a certain (program) behavior?
• The absence of a certain (program) behavior?

LAST TIME: ANALYSIS LIMITS
5

REVIEW: COMPUTABILITY

The limits of computability
• The Halting Problem: No decision procedure for halting
• Rice’s Theorem: The Halting Problem implies no

decision procedure for any reachability problem

Analysis without decision procedures
• Approximation
• How do we approximate? Soundness / Completeness

LAST TIME: ANALYSIS DESIGN
6

REVIEW: COMPUTABILITY

NO analysis can be both sound and complete

Building an analysis that is either sound or
complete is trivial
• Complete – Always report positive, no

false negatives
• Sound – Always report negative, no false

positives

7

Given the limitations of analysis, how
might we still provide useful tools for
software security evaluation?

Static Analysis, get it?

THIS TIME: WORKING WITH CONSTRAINTS
TODAY’S LECTURE

LECTURE OUTLINE

• Contextualizing Rice’s

Theorem

• Program Guarantees

• Analysis Specificity

• Dataflow analysis

9

RICE’S THEOREM (NON)ASSERTIONS
CONTEXTUALIZING RICE’S THEOREM

All non-trivial semantic properties

of programs are undecidable.

Excludes properties that do not

regard program's behavior

j/k: Rice’s Theorem is named

 after Dr. Henry Gordon Rice

Excludes properties that are

true or false for every program

Notably, the theorem

ignores syntactic

properties

SYNTACTIC STATIC ANALYSIS
10

CONTEXTUALIZING RICE’S THEOREM

Some troubling behavior of a program may be
discoverable via simply observing its text

int main(int argc, const char * argv[]){

 const char * password = argv[1];

 int good;

 if (password == “supersecret”){

 good = 1;

 } else {

 good = 0;

 }

 authenticate(good);

}

INSIGHTS
11

CONTEXTUALIZING STATIC ANALYSIS

Software engineering “code smells” / stats

Cyclomatic complexity

Long functions

Use of the forbidden / arcane constructs

12

RICE’S THEOREM (NON)ASSERTIONS
CONTEXTUALIZING RICE’S THEOREM

All non-trivial semantic properties

of programs are undecidable.

Excludes properties that do not

regard program's behavior

j/k: Rice’s Theorem is named

 after Dr. Henry Gordon Rice

Excludes properties that are

true or false for every program

Notably, the theorem

ignores syntactic

properties

No decision procedure: that’s a high bar!

We can design analyses

that work perfectly in

some cases, but admit

uncertainty in others

LECTURE OUTLINE

• Contextualizing Rice’s

Theorem

• Program Guarantees

• Preciseness vs Efficiency

• Dataflow analysis

14

STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

For security analysis, we want to lock out “bad” programs

(even at the cost of locking out some “good” programs)

Provide assurances about what a program
will NEVER or ALWAYS do
• Static analysis might report EVERY program that

(possibly) has a problem
• Static analysis might certify EVERY program that

(definitely) has no problem

15

STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

Complete bug finder - flag

Complete bug finder – no flag

lump “unsure” into “bad”

Analysis

Definitely Good

Definitely Bad

¯_(ツ)_/¯
Target

Program

Provide assurances about what a program
will NEVER or ALWAYS do
• Static analysis might report EVERY program that

(possibly) has a problem
• Static analysis might certify EVERY program that

(definitely) has no problem

16

STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

Goal: minimize the uncertainty

Complete bug finder - flag

Complete bug finder – no flag

lump “unsure” into “bad”

Analysis

Definitely Good

Definitely Bad

¯_(ツ)_/¯
Target

Program

LECTURE OUTLINE

• Contextualizing Rice’s

Theorem

• Program Guarantees

• Analysis over CFG

• Preciseness vs Efficiency

18

STATIC ANALYSIS - OPPORTUNITIES
STATIC ANALYSIS PHILOSOPHY

Goal: minimize the uncertainty

Complete bug finder - flag

Complete bug finder – no flag

lump “unsure” into “bad”

Analysis

Definitely Good

Definitely Bad

¯_(ツ)_/¯
Target

Program

(comes in part from reachability)

Key idea: Build the Control-Flow Graph,

explore routes through the graph to

(over)approximate reachability

19

BUILDING THE CFG
CONTROL FLOW GRAPH ANALYSIS

In general, an iterative process:
Pass over instructions, mark leaders/ terminators
 Might create new leaders / terminators,

so keep doing passes until no more found
Build basic blocks by boundaries
Connect control source to control destination
Refine based on analyses

For LLVM Bitcode, even easier
All blocks (except possibly entry) have labels
Connect control source to control destination
One deviation from LLVM: split after a call!
Refine based on analyses

20

CFG NOTATION
STATIC ANALYSIS PHILOSOPHY

We’ll enforce a couple of constraints on
the CFG

It must be a hammock –
One entry point, one exit block

Call sites and return points are connected via a
special link edge

VISUALIZING THE CFG: DOT
21

CONTROL FLOW GRAPH ANALYSIS

FLOW-SENSITIVE ANALYSIS RELIES HEAVILY ON THE CONTROL-FLOW GRAPH
CONCEPT

It’s pretty helpful to have a CFG in hand

Good news! You know how to automatically induce the CFG structure

Gooder news! There’s a format to visualize CFGs

digraph name {

 nodeA […];

 nodeB […];

 nodeA -> nodeB […];

}

dot –Tpdf graph.dot –o graph.pdf

File graph.dot cmdline output

EXISTING CFG TOOLS
22

CONTROL FLOW GRAPH ANALYSIS

Good news! You know how to automatically induce the CFG structure

Gooder news! There’s a format to visualize CFGs

Goodest news! llvm can output a dot-format CFG for .ll-format code

opt -passes=dot-cfg prog.ll > /dev/null

opt -dot-cfg prog.ll > /dev/null

23

OVERAPPROXIMATING REACHABILITY
STATIC ANALYSIS PHILOSOPHY

LECTURE OUTLINE

• Contextualizing Rice’s

Theorem

• Program Guarantees

• Analysis over CFG

• Preciseness vs Efficiency

25

INFEASIBLE PATHS
STATIC ANALYSIS: DATAFLOW

int f(int arg) {

 int b = 1;

 int c = 0;

 if (arg > 0){

 b = 0;

 c = 1;

 }

 if (b && c) {

 arg = 2 / 0;

 }

 return arg;

}

Is this program buggy?

entry

block1

block2

block3

block4

Just check every path(?!?!?!)

26

WRASSLIN’ WITH STATE SPACE
PRECISENESS VS EFFICIENCY

State space: the set of all possible
configurations of the target model

Naïve state space representation:
Consider each path separately

27

PATH-SENSITIVE DATAFLOW ANALYSIS
STATIC ANALYSIS: DATAFLOW

entry:

br label %loop

after:

%res = sdiv i32 2, %argcJoin

%argcJoin

ret i32 %res

How many paths are there in this program?

Loop:

%argcJoin = phi i32 [%argc, %entry] , [%argcInc, %loop]

%argcInc = add i32 %argcJoin, -1

%mychar = call i32 (…) @getchar();

%is97 = icmp eq i32 %mychar, 97

Br i1 %is97, label %after, label %loop

false

true

28

WRASSLIN’ WITH STATE SPACE
PRECISENESS VS EFFICIENCY

State space: the set of all possible
configurations of the analysis target

Naïve state space representation:
enumerate all configurations of a
program
• For n bits of memory: 2n states

Practical state space representation:
Summarize sets of configurations of a
program

29

THE POWER OF STATIC ANALYSIS
ANALYSIS SPECIFICITY

The power of static analysis:
You can see beyond the code that is
executed in an individual trace

The responsibility of static analysis:
You need to consider the
conditions/circumstances/context in
which code would be executed while
keeping state space small

30

OVERAPPROXIMATING REACHABILITY
STATIC ANALYSIS PHILOSOPHY

NEXT TIME

FLOW-SENSITIVE ANALYSIS

31

	Slide 1: Exercise #7
	Slide 2: Static Analysis
	Slide 3: Administrivia and Announcements
	Slide 4: Last Time: Analysis Definitions
	Slide 5: Last Time: Analysis Limits
	Slide 6: Last Time: Analysis Design
	Slide 7: This Time: Working With Constraints
	Slide 8: Lecture Outline
	Slide 9: Rice’s Theorem (Non)assertions
	Slide 10: Syntactic Static Analysis
	Slide 11: Insights
	Slide 12: Rice’s Theorem (Non)assertions
	Slide 13: Lecture Outline
	Slide 14: STATIC Analysis - Opportunities
	Slide 15: STATIC Analysis - Opportunities
	Slide 16: STATIC Analysis - Opportunities
	Slide 17: Lecture Outline
	Slide 18: STATIC Analysis - Opportunities
	Slide 19: Building the CFG
	Slide 20: CFG Notation
	Slide 21: Visualizing the CFG: DOT
	Slide 22: Existing CFG Tools
	Slide 23: Overapproximating Reachability
	Slide 24: Lecture Outline
	Slide 25: Infeasible Paths
	Slide 26: Wrasslin’ With State Space
	Slide 27: Path-Sensitive Dataflow Analysis
	Slide 28: Wrasslin’ With State Space
	Slide 29: The Power of Static Analysis
	Slide 30: Overapproximating Reachability
	Slide 31: Next TiME

