EXERCISE #22

PROGRAM INSTRUMENTATION REVIEW
Write your name and answer the following on a piece of paper

Give an example of a program where Steensgard’s analysis will indicate a false-
positive points-to relationship that Andersen’s would avoid

EXERCISE #22 SOLUTION
PROGRAM INSTRUMENTATION REVIEW

ADMINISTRIVIA
AND
ANNOUNCEMENTS

STATIC
INSTRUMENTATION

EECS 677: Software Security Evaluation

Drew Davidson

PREVIOUSLY: PROGRAM INSTRUMENTATION

REVIEW: LAST LECTURE

5 Yo 117 'y «\‘\'W

ALTER THE PROGRAM TO GAIN MORE /_A/\

INFORMATION OUT OF DYNAMIC ANALYSIS rlaj\a CO'\-‘:"E[! — L]’VCQLEU!
Saur\c ’ 7

TWO FORMS OF INSTRUMENTATION

Static instrumentation — Alter the program
statically, to gain information at runtime

Dynamic instrumentation — Alter the program at runtime,
potentially leveraging runtime info

THIS LESSON: STATIC INSTRUMENTATION

REVIEW: LAST LECTURE

INSERTING MEASUREMENT PROBES
INTO A PROGRAM BEFORE IT IS RUN

More closely associated with proactive
software evaluation — (why?)

STATIC INSTRUMENTATION TOOLS

PROGRAM INSTRUMENTATION: APPROACH

OFTEN BUILT RIGHT INTO COMPILER

LLVM Coverage tools
GCC Coverage tools

SOMETIMES BUILT UPON OPTIMIZER

Google’s closure compiler

https://github.com/google/closure-compiler

LECTURE OUTLINE

* Example: Test Coverage

* Using LLVM

Instrumentation

* Developing LLVM

Instrumentation

TEST COVERAGE

EXAMPLE: TEST COVERAGE

HOW DO WE KNOW IF OUR TEST
SUITE IS SUFFICIENT?

Line/branch/path coverage — How many
lines/branches/paths of the program does suite

exercise? —

TEST COVERAGE

EXAMPLE: TEST COVERAGE

HOW DO WE KNOW IF OUR TEST
SUITE IS SUFFICIENT?

Line/branch/path coverage — How many
lines/branches/paths of the program does suite

exercise? .
rand int();

(v == 2){
o->setInvalid();

1:
2
3:
4
5:
6:
7
8:

g:%’ﬂ b:JT/"\a

v = VVJ’ JL vV - ;-

9:'&\((
o=

o—->property () ;

ASSESSING COVERAGE

PROGRAM INSTRUMENTATION: APPROACH

: int f(bool b
Obj * o
int v =

BIG IDEA: INJECT COUNTERS
Simple: Add a counter at every instruction

Better: Add a counter at every basic block
rand int();
WHAT COVERAGE INFORMATION DOES THIS GIVE

Us? (v == 2){

o->setInvalid();

1

2
3:
4
5:
6:
7
8:

Instruction: Yes!
Branch: Yes! : o->property();

Path: No! —

EFFICIENT PATH AND BRANCH COUNTERS

PROGRAM INSTRUMENTATION: APPROACH

BALL AND LARUS ‘96

Intuition:

- Assign integer values to edges such that
no two paths

compute the same path sum (Section 3.2).
— Select edges to instrument using a
spanning tree

Efficient Path Profiling

Thomas Ball
Bell Laboratorics
Lucent Technologies
thall @research.bell-labs.com

Abstract

A path profile determines how muny times each acyclic
path in a rouring executes, This type of profiling subsumes
the mure common basic bleck and edge profiling, which only
approximate path freguencies. Path prafiles have many po-
temtial uses in program performance funing, profile-directed
compilation, and software test caverage.

This paper describes a new algorithm for path profil-
ing. This simple, fast algorithm selects and places profile in-
Strumentation to minimize run-fime overhead. Instrumenied
programs run with overhead comparable to the best previ-
ous profiling technigues. On the SPECYS benchmarks, path
profiling overhead averaged 31%. as compared to 16% for
efficient edge profiling, Path profiling also identifies longer
parhs than a previous technigue, which predicted paths from
edge profiles (average of 88, versus 34 instructions). More-
over, profiling shows that the SPECSS train input datasets
covered most of the paths executed in the ref datasets.

1 Introduction

Program profiling counts sccurrences of an event during
a program's execution. Typically, the measured event is the
exccution of a local portion of a program, such as a rou-
tine or line ol code. Recently, fine-grain profiles—of basic
blocks and control-flow edges—have become the basis for
profile-driven compilation, which uses measured [requen-
cies Lo guide compilation and optimization.

*This vsvarch supporned by: Wright Labomeery Avionics Directorate,
A Posoe Material Command. USAF, under grant #F33615.94-1-
1525 znd ARPA order no, S50 NSF WYL Award CCR-9357779,
with support from Hewlelt Packard, Sun Micresystems, and PGL
MSF Crant MIPO2I500T; and DOE Grant DE FOO2Z-43ERTSTE
The U.5. Government is autharized to reproduce and distribure reprints for
G | pusposes i ing any copyright notation thereon.
The vaews and cenclusions cootained herein are those of the asthors and
should put be d s necessanily ing the nfficial policies
or endossements. cither expressed o implied, of the Woght Labueratory
Avignics Dircclorate oo e U S, Governmem.

James R. Larus®
Dept. of Computer Sciences
Iniversity of Wiscansin-Madison
larus @cs.wisc.edu

Path Profl Erof?

ACDF an 110
ACDEF &an 40
ABCDF] o
ABCDEF 100 100
ABLDF 20 1]
ABDEF [i] 2

Flgure 1. Example in which edge profiling does not iden-
ufy the most frequently executed paths. The lable con-
tains two different path profiles. Both path profiles in-
duce the same edge exscution frequencies, shown by the
edge frequencies in the control-flow graph. In path profile
Profl, path ABCDEF 15 most [requently executed, al-
though the heuristic of following edges with the highest fre-
quency identifies path ACTEF as the most frequent.

One use of profile information is to identify heavily exe-
cuted paths (or traces) in a program [Fis81, E1I8S5, Chaii,
YS94]. Unforiunately, basic block and edge profiles, al-
though inexpensive and widely available, do not always cor-
rectly predict frequencies of overlapping paths. Consider,
for example, the control-flow graph (CFG) in Figure 1. Each
edge in the CFG is labeled with its frequency, which nor-
mally results from dynamic profiling, but in the figure is
induced by both path profiles in the table, A commaonly
used heuristic o select a heavily exccuted path follows the
muost frequently executed edge out of a basic biock [Cha88],
which identifies path ACDEF. However, in path profile
Prof1, this path executed only 60 times, as compared (o 90
times for path ACDF and 100 times for path ABCDEF.
In profile Prof2, the disparity is even greater although the
edpe profile is exactly the same.

This inaccuracy is usually ignored, under the assump-
tion thal accurate path profiling must be far more expensive
than basic block or edge profiling. Path profiling is the ul-
timate form of control-flow profiling, as it uniquely deter-

12

BRANCH FREQUENCY

PROGRAM INSTRUMENTATION: APPROACH

NAIVE APPROACH: INSTRUMENT
PROBES AT EACH EDGE

Inefficient!

We don’t really need an A -> B counter
(it’s the sum of the B-> C and B -> D counters)

120'/ \\150

B

—>

00

C

160

1
TN

D

250

10

E

a

F

270

160

13

Path

ACDF
ACDEF
ABCDF
ABCDEF
ABDF
ABDEF

Profl Prof2
90 110
60 40

0 0

100 100
20 0

0 20

PATH FREQUENCY

REVIEW: THE PROBLEM

120'/ \\150

B

—.»

00

C

160

1
20 A

D

250

10

E

&

F

160

270

14

EXAMPLE: COVERAGE / FREQUENCY

PROGRAM INSTRUMENTATION: APPROACH

EXAMPLE OF INSTRUMENTATION:
COUNTING EXECUTION FREQUENCY

Why is this useful? (Placing sanitizers)

u+v
t+tut+tv-w

Let’s first consider inserting edge counters

al
Wt
| T T

otz

+tu+v

Inefficient!

We don’t really need an A -> B counter
(it’s the sum of the B-> C and B -> D counters)

LECTURE OUTLINE

* Example: Test Coverage

* Using LLVM

Instrumentation

* Developing LLVM

Instrumentation

SETUP / ASSUMPTIONS

LLVM BUILT-IN INSTRUMENTATION

THIS PORTION OF THE LECTURE USES A CLANG++ INSTALLATION.

Should work for many versions of LLVM (tested on clang++-18)
Works on clang++14 (which is installed on the cycle servers)

INSTALLATION (ON A LOCAL MACHINE)

sudo apt install clang++ [lvm-dev

LLVM COVERAGE INSTRUMENTATION

LLVM BUILT-IN INSTRUMENTATION

GOAL: ASSESS THE COVERAGE OF A TEST SUITE

APPROACH: USE LLVM’S BUILT-IN INSTRUCTION
INSTRUMENTATION

Piggyback on LLVM’s PGO facilities

1) Insert PGO probes

2) Interpret probes as coverage measurements

LLVM: INSERTING PGO PROBES

LLVM BUILT-IN INSTRUMENTATION

—-fcoverage-mapping

Map instrumentation results to source code

—-fprofile-instr—-generate

Generate profile information at the source instruction level

—-fprofile—-generate

Generate profile information at the IR level

LLVM: INSERTING PGO PROBES

LLVM BUILT-IN INSTRUMENTATION

Let’s write a simple LLVM program, then observe the probes...

clang++ prog.c —-o prog —-fprofile-instr-generate —-emit-11lvm
-fcoverage-mapping

This will cause the program to output an additional coverage file in the
location of the environment variable LLVM_PROFILE_FILE

export LLVM PROFILE FILE=testl.prof

LLVM COVERAGE INSTRUMENTATION

LLVM BUILT-IN INSTRUMENTATION

GOAL: ASSESS THE COVERAGE OF A TEST SUITE

APPROACH: USE LLVM’S BUILT-IN INSTRUCTION
INSTRUMENTATION

Piggyback on LLVM’s PGO facilities

1) Insert PGO probes

2) Interpret probes as coverage measurements

LLVM: COVERAGE REPORT

LLVM BUILT-IN INSTRUMENTATION

The profile file is useful for a variety of things (i.e. PGO). As such, it is not
(immediately) human-readable

We’ll use some extra tools to generate a readable report

llvm-profdata merge -sparse testl.prof -o final.profdata

llvm—covU&M{ show-%sad@c —instr-profile=final.profdata >& profile.report

"

PUTTING IT ALL TOGETHER

REVIEW: LAST LECTURE

THESE COMMANDS WORK FINE FOR 1 TEST RUN, BUT WE CARE ABOUT TEST
SUITES

clang++-18 prog.ll -o prog -fprofile-instr—-generate -fcoverage-mapping
export LLVM PROFILE FILE=testl.prof
./prog

export LLVM PROFILE FILE=testZ2.prof
./prog

llvm-profdata merge -sparse test*.prof -o final.profdata

llvm-cov-18 show prog —-instr-profile=final.profdata >& profile.report

EXAMPLE: LLVM COVERAGE INSTRUMENTATION
PROGRAM INSTRUMENTATION: APPROACH

LET’S TAKE IT TO THE TERMINAL!

LECTURE OUTLINE

* Example: Test Coverage

* Using LLVM

Instrumentation

* Developing LLVM

Instrumentation

CUSTOM INSTRUMENTATION

PROGRAM INSTRUMENTATION: APPROACH

THE PREVIOUS EXAMPLE TOOK ADVANTAGE OF PRE-EXISTING
INSTRUMENTATION

What if we wanted to make our own custom
instrumentation?

CUSTOM INSTRUMENTATION

PROGRAM INSTRUMENTATION: APPROACH

GETTING STARTED

1) Reference the LLVM API

2) Build our own (trivial) analysis pass
3) Hook into the LLVM opt infrastructure
)

4) Run our analysis pass

GOING FURTHER

Insert more full-featured functionality
(https:/llvm.org/doxygen/classlivm_1_1IRBuilder.html)

https://llvm.org/doxygen/classllvm_1_1IRBuilder.html

EXAMPLE: LLVM CUSTOM INSTRUMENTATION

PROGRAM INSTRUMENTATION: APPROACH

LET’S REMOVE AND ADD SOME INSTRUCTIONS!

Consider a simple “add2” program:

#include <stdio.h>
int main(int argc, const char**
argv) {
int num;
scanf ("%1", &num);
printf ("$i\n", num + 2);
return 0;

EXAMPLE: LLVM CUSTOM INSTRUMENTATION
PROGRAM INSTRUMENTATION: APPROACH

LET’S TAKE IT TO THE TERMINAL!

WRAP-UP

WE’VE DESCRIBED THE THEORY AND
PRACTICE OF PROGRAM INSTRUMENTATION

Next time: Consider how we generate test cases

30

WRAP-UP

WE’VE DESCRIBED 2 FORMS OF
ALTERING THE PROGRAM

More heuristic by nature

LLVM: COVERAGE MAPPING

LLVM BUILT-IN INSTRUMENTATION

For understanding line coverage, we need to map changes to source code

clang++ prog.c —-o prog —-fprofile-instr-generate -emit-11lvm
-fcoverage-mapping

This will cause the program to output an additional coverage file in the
location of the environment variable LLVM_PROFILE_FILE

export LLVM PROFILE FILE=testl.prof

	Slide 1: Exercise #22
	Slide 2: Exercise #22 solution
	Slide 3: Administrivia and Announcements
	Slide 4: Static Instrumentation
	Slide 5: Previously: Program Instrumentation
	Slide 6: This Lesson: Static Instrumentation
	Slide 7: Static Instrumentation Tools
	Slide 8: Lecture Outline
	Slide 9: Test Coverage
	Slide 10: Test Coverage
	Slide 11: Assessing Coverage
	Slide 12: Efficient Path and Branch Counters
	Slide 13: Branch Frequency
	Slide 14: Path Frequency
	Slide 15: Example: Coverage / Frequency
	Slide 16: Lecture Outline
	Slide 17: Setup / Assumptions
	Slide 18: LLVM Coverage Instrumentation
	Slide 19: LLVM: Inserting PGO Probes
	Slide 20: LLVM: Inserting PGO Probes
	Slide 21: LLVM Coverage Instrumentation
	Slide 22: LLVM: Coverage Report
	Slide 23: Putting it All together
	Slide 24: Example: LLVM Coverage Instrumentation
	Slide 25: Lecture Outline
	Slide 26: Custom Instrumentation
	Slide 27: Custom Instrumentation
	Slide 28: Example: LLVM Custom Instrumentation
	Slide 29: Example: LLVM CUSTOM Instrumentation
	Slide 30: Wrap-up
	Slide 31: Wrap-up
	Slide 32: LLVM: Coverage Mapping

