
EXERCISE #18

1

REVIEW INTERPROCEDURAL ANALYSIS

Write your name and answer the following on a piece of paper

Draw the exploded supergraph for the following program:

EXERCISE #18: SOLUTION

2

REVIEW INTERPROCEDURAL ANALYSIS

ADMINISTRIVIA
AND
ANNOUNCEMENTS

SUMMARY FUNCTIONS
EECS 677: Software Security Evaluation

Drew Davidson

5

LAST TIME: INTERPROCEDURAL ANALYSIS
REVIEW: LAST LECTURE

CONSIDER THE EFFECT OF MULTIPLE
FUNCTIONS

Simplistic

– Function call overturns all global / aliased facts

Supergraph / Context String

– 1-CFA (use a call-chain of 1)

6

THE EXPLODED SUPERGRAPH…
EXPLODES

EXPLODING SUPERGRAPHS
SUPERGRAPHS

WHAT CAN WE DO IN THE PRESENCE
OF SUCH LIMITATIONS?

Gather a lightweight, over-approxmation of the

effect of a function call

For large programs, the supergraph

may be too large (and exploding the

supergraph certainly will not help)

LECTURE OUTLINE

Intuition

MOD/REF analysis

• Global only

• Globals, Locals and args

Abstract Summaries

8

TRACKING CONTEXT IS EXPENSIVE

INTUITION
SUMMARY FUNCTIONS

Maybe our analysis can get by without it

COARSE-GRAINED ANALYSIS NEED
ONLY CAPTURE COARSE-GRAINED
FUNCTION INFORMATION

“Summarize” the information we need

to know

Function

summary

9

TRACKING CONTEXT IS EXPENSIVE

INTUITION
SUMMARY FUNCTIONS

Maybe our analysis can get by without it

COARSE-GRAINED ANALYSIS NEED
ONLY CAPTURE COARSE-GRAINED
FUNCTION INFORMATION

“Summarize” the information we need

to know

Function

summary

global1 = SOURCE();

SINK(global2);

foo();

Does foo…

reference (i.e. read) global1?

Modify (i.e. write) global2?

LECTURE OUTLINE

Intuition

MOD/REF analysis

• Global only

• Globals, Locals and args

Abstract Summaries

11

LET US ATTEMPT TO COMPUTE 2 SETS

INTERPROCEDURAL MOD/REF ANALYSIS
SUMMARY FUNCTIONS

GMOD(P) – The set of variables that might be

modified as a result of calling P

GREF(P) – The set of variables that might be

referenced as a result of calling P

Also includes

 variables

mod/ref’ed

by P’s callees!

int globalA;

int globalB;

int globalC;

void bar(){

 globalB = 2;

 cout << (globalC);

}

void foo(){

 globalA = 1;

 bar();

}

int main(){

 foo();

}

Build IMOD(P) and IREF(P) – the variables

immediately modified in P (ignoring callees)

Build the simple call graph

Run the dataflow algorithm to saturation

Repurpose the call graph for dataflow

algorithm!

BASIC IDEA (LET’S IGNORE PARAMETERS,
POINTERS, AND LOCALS FOR NOW)

12

INTERPROCEDURAL MOD/REF ANALYSIS
SUMMARY FUNCTIONS

int globalA;

int globalB;

int globalC;

void bar(){

 globalB = 2;

 cout << (globalC);

}

void foo(){

 globalA = 1;

 bar();

}

int main(){

 foo();

}

BASIC IDEA (LET’S IGNORE PARAMETERS,
POINTERS, AND LOCALS FOR NOW)

Build IMOD(P) and IREF(P) – the variables

immediately modified in P (ignoring callees)

Build the simple call graph

Run the dataflow algorithm to saturation

Repurpose the call graph for dataflow

algorithm!

“Good enough” initial approximation:

Simple statement scan

IMOD(foo) = { A }

IMOD(bar) = { B }

IREF(foo) = { }

IREF(bar) = { C }

IMOD(baz) = { D }

IMOD(main) = { }

IREF(baz) = { B }

IREF(main) = { }

13

INTERPROCEDURAL MOD/REF ANALYSIS
SUMMARY FUNCTIONS

int globalA;

int globalB;

int globalC;

void bar(){

 globalB = 2;

 cout << (globalC);

}

void foo(){

 globalA = 1;

 bar();

}

int main(){

 foo();

}

Build IMOD(P) and IREF(P) – the variables

immediately modified in P (ignoring callees)

Build the simple call graph

Run the dataflow algorithm to saturation

Repurpose the call graph for dataflow

algorithm!

IMOD(foo) = { A }

IMOD(bar) = { B }

IREF(foo) = { }

IREF(bar) = { C }

IMOD(baz) = { D }

IMOD(main) = { }

IREF(baz) = { B }

IREF(main) = { }

main

foo

bar

baz

BASIC IDEA (LET’S IGNORE PARAMETERS,
POINTERS, AND LOCALS FOR NOW)

14

INTERPROCEDURAL MOD/REF ANALYSIS
SUMMARY FUNCTIONS

Build IMOD(P) and IREF(P) – the variables

immediately modified in P (ignoring callees)

Build the simple call graph

Run the dataflow algorithm to saturation

Repurpose the call graph for dataflow

algorithm!

IMOD(foo) = { A }

IMOD(bar) = { B }

IREF(foo) = { }

IREF(bar) = { C }

IMOD(baz) = { D }

IMOD(main) = { }

IREF(baz) = { B }

IREF(main) = { }

(optimization)

collapse cycles

main

foo

bar

baz

bar/

baz

main

foo

BASIC IDEA (LET’S IGNORE PARAMETERS,
POINTERS, AND LOCALS FOR NOW)

15

INTERPROCEDURAL MOD/REF ANALYSIS
SUMMARY FUNCTIONS

Build IMOD(P) and IREF(P) – the variables

immediately modified in P (ignoring callees)

Build the simple call graph

Run the dataflow algorithm to saturation

Repurpose the call graph for dataflow

algorithm!

IMOD(foo) = { A }

IMOD(bar) = { B }

IREF(foo) = { }

IREF(bar) = { C }

IMOD(baz) = { D }

IMOD(main) = { }

IREF(baz) = { B }

IREF(main) = { }

bar/

baz

main

foo
Add a dummy

exit node targeted

by all leaves

(optimization)

collapse cycles

Exit

GMOD: fP(S) = S U IMOD(P)

Init GMOD: {}

Init GREF: {} Join = Union

GREF: fP(S) = S U IREF(P)
BASIC IDEA (LET’S IGNORE PARAMETERS,
POINTERS, AND LOCALS FOR NOW)

16

INTERPROCEDURAL MOD/REF ANALYSIS
SUMMARY FUNCTIONS

Build IMOD(P) and IREF(P) – the variables

immediately modified in P (ignoring callees)

Build the simple call graph

Run the dataflow algorithm to saturation

Repurpose the call graph for dataflow

algorithm!

IMOD(foo) = { A }

IMOD(bar) = { B }

IREF(foo) = { }

IREF(bar) = { C }

IMOD(baz) = { D }

IMOD(main) = { }

IREF(baz) = { B }

IREF(main) = { }

bar/

baz

main

foo

Exit

GMOD: fP(S) = S U IMOD(P)

Init GMOD: {}

Init GREF: {} Join = Union

GREF: fP(S) = S U IREF(P)
BASIC IDEA (LET’S IGNORE PARAMETERS,
POINTERS, AND LOCALS FOR NOW)

17

INTERPROCEDURAL MOD/REF ANALYSIS
SUMMARY FUNCTIONS

Build IMOD(P) and IREF(P) – the variables

immediately modified in P (ignoring callees)

Build the simple call graph

Run the dataflow algorithm to saturation

Repurpose the call graph for dataflow

algorithm!

BASIC IDEA (LET’S IGNORE PARAMETERS,
POINTERS, AND LOCALS FOR NOW)

This is a pretty big restriction,

we should remove it

Good news:

GMOD computation is the same

Bad news:

We’ll need to use the compound call graph

More elaborate IMOD computation

Can’t collapse cycles

LECTURE OUTLINE

Intuition

MOD/REF analysis

• Global only

• Globals, Locals and args

Abstract Summaries

19

INTERPROCEDURAL MOD/REF ANALYSIS
SUMMARY FUNCTIONS

Build IMOD(P) and IREF(P) – the variables

immediately modified in P (ignoring callees)

Build the compound call graph

Run the dataflow algorithm to saturation

Repurpose the call graph for dataflow

algorithm!

FULL IDEA

main

L3

a

L9 L10

b
L15

IMOD(foo) = { A }

IMOD(bar) = { B }

IREF(foo) = { }

IREF(bar) = { C }

IMOD(baz) = { D }

IMOD(main) = { }

IREF(baz) = { B }

IREF(main) = { }

20

LAST TIME: GMOD & GREF COMPUTATION
REVIEW: LAST LECTURE

GLOBALS, LOCALS & VALUE-PASSING

GREF will change, GMOD doesn’t need to change

void main() {

S1: call a(v1)

}

void a(f1) {

S2: call b(v2, v3)

S3: call b(v4, v5)

}

void b(f2, f3) {

 print f3;

S4: call b(g1, g2)

}

node or

call site

GREF

set

main g2

a g2, v3, v5

b f3, g2

s1 g2

s2 v3, g2

s3 v5, g2

s4 g2

main

IREF = { }

s1

a

IREF = { }

s2 s3

b

IREF = {f3}

s4

Init all node GREF sets to their IREF sets

Init all call site GREF sets to empty

Put all nodes and call sites on a worklist

Iterate until the worklist is empty.

Each time a node n is removed from the worklist, its

current GREF set is computed. If that set doesn't

match its previous value, then add all call sites to n to

the worklist (if not present).

Each time a call site s is removed from the worklist,

its current GREF set is computed. If that set doesn't

match its previous value, then the node that

contains s is added to the worklist (if not present).

LECTURE OUTLINE

Intuition

MOD/REF analysis

• Global only

• Globals, Locals and args

Abstract Summaries

22

LET’S RECALL THE PROBLEM THAT GOT US INTO THIS MESS

ABSTRACT SUMMARIES
SUMMARY FUNCTIONS

Summarize callee analysis (rather than

include it in the analysis) int main(){

 g = -1;

 inc();

inc();

return 2 / g;

void inc(){

 g++;

23

WHAT IF THE CALLEE ISN’T SO TRICKY

ABSTRACT SUMMARIES
SUMMARY FUNCTIONS

Summarize callee analysis (rather than

include it in the analysis) int main(){

 g = -1;

 inc();

inc();

return 2 / g;

void inc(){

 g++;

WRAP-UP

	Slide 1: Exercise #18
	Slide 2: Exercise #18: Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Summary Functions
	Slide 5: Last Time: Interprocedural Analysis
	Slide 6: Exploding Supergraphs
	Slide 7: Lecture Outline
	Slide 8: Intuition
	Slide 9: Intuition
	Slide 10: Lecture Outline
	Slide 11: Interprocedural MOD/REF Analysis
	Slide 12: Interprocedural MOD/REF Analysis
	Slide 13: Interprocedural MOD/REF Analysis
	Slide 14: Interprocedural MOD/REF Analysis
	Slide 15: Interprocedural MOD/REF Analysis
	Slide 16: Interprocedural MOD/REF Analysis
	Slide 17: Interprocedural MOD/REF Analysis
	Slide 18: Lecture Outline
	Slide 19: Interprocedural MOD/REF Analysis
	Slide 20: Last Time: Gmod & GREF Computation
	Slide 21: Lecture Outline
	Slide 22: Abstract Summaries
	Slide 23: Abstract Summaries
	Slide 24: Wrap-up

