EXERCISE 28

FUZZING REVIEW

Give 2 example programs, each with 1 if statement. One of the programs should be
likely for a fuzzer to generate full line coverage, the other should be difficult for the
fuzzer to generate full line coverage.
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EXERCISE 28 SOLUTION

FUZZING REVIEW

Give 2 example programs, each with 1 if statement. One of the programs should be
likely for a fuzzer to generate full line coverage, the other should be difficult for the
fuzzer to generate full line coverage.
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SYMBOLIC EXECUTION

EECS 677: Software Security Evaluation

Drew Davidson



PREVIOUSLY: FUZZING

OUTLINE / OVERVIEW

GENERATING RANDOM TEST CASES
Surprisingly effective in practice
Main challenge is exploring “new” behavior

The random “fuzz” of white noise



FUZZING

RESEARCH DIRECTION: “GUNKING” DETOUR

FUZZING AS ADVERSARIAL RECON

Fuzzing is so good at finding bugs that even the bad guys do it

PERHAPS A PROGRAM SHOULD DEPLOY ANTI-FUZZING TECH

What would that look like?



THE PROBLEM OF COVERAGE: STATIC

OUTLINE / OVERVIEW

This program is well-analyzed This program has an FP
in the abstract domain of signs in the abstract domain of signs
"stdlib.h" "stdlib.h"
main () { main () {
c = getchar(); c = getchar();
if (¢ == 0 && c == 1) { if (¢ == 1 && c == 2) {

return 1 / 0; return 1 / 0;

} }



ME PROBLEM OF COVERAGE: DYNAMIC

"stdlib.h"
main () {
c = getchar();
if (c == 12345) |

return 1 / 0;

}
}



% WHAT MATTERS IS PREDICATES

"stdlib.h"
: int main () {
int ¢ = getchar();

if To——32345) { ¢ 7 |3 ()([ ((If)_

return 1 / 0;

}
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PREDICATES GET IN THE WAY!

SYMBOLIC EXECUTION

"stdlib.h"
main () {
c = getchar ()
if (c == 12345) {
c = getchar();
if (¢ 5 2 == 0 ) {

return 1 / 0;
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%SYM BOLIC EXECUTION: INTUITION
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%XPLORE BOTH SIDES OF PREDICATE!
SYMBOLIC EXECUTION: INTUITION
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THE SYMBOLIC EXECUTION TREE

SYMBOLIC EXECUTION

At each line of the program:
- Advance the symbolic program state
- Split the symbolic state into 2 versions
1) Satisfies the branch predicate
2) Does not satisfy the branch predicate

"stdlib.h"
main () {
c = getchar();
if (c == 12345) |
c = getchar();
if (¢ % 2 == ) |

return 1 / 0;

}
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ELIMINATING INFEASIBLE PATHS

SYMBOLIC EXECUTION

"stdlib.h"

: int main () {

int ¢ = getchar();

if (¢ == 12345) {
—e—= \jctplldl_ () M
if (¢ % 2 == 0 ) {

return 1 / 0;

}
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% THE MAGIC OF THE SOLVER
SYMBOLIC EXECUTION

AL AC AR AP

Satisfying
assignment

Boolean

& VAR a_ equation
(A

Somewhat Satisfying
arbitrary assignment

equation
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THE SYMBOLIC EXECUTION TREE

SYMBOLIC EXECUTION

At each line of the program: \ ‘L f ( (
- Advance the symbolic program state [ A /M) A )
- Split the symbolic state into 2 versions
1) Satisfies the branch predicate _ f [{WL C(/],W
2) Does not satisfy the branch predicate /\_,\/—%
ENSURE FEASIBILITY 0& X = 0 / orL
1: "stdlib.h"
2: main () { /‘A?
3: c = getchar();
4: if (c ==g12345)(){ __F (Qﬁ/c 02,.,, D
5: c = getchar();
6: if (¢ % 2 == 0
7 return 1 / O 5
8: }
L Z/OL als
10: }



SYMBOLIC EXECUTION

% SOUNDNESS / COMPLETENESS

Sound!

Complete!

May not terminate @




WRAP-UP

SYMBOLIC EXECUTION

Take all paths, don’t commit to values
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