
EXERCISE 28

1

FUZZING REVIEW

Give 2 example programs, each with 1 if statement. One of the programs should be

likely for a fuzzer to generate full line coverage, the other should be difficult for the

fuzzer to generate full line coverage.

EXERCISE 28 SOLUTION

2

FUZZING REVIEW

Give 2 example programs, each with 1 if statement. One of the programs should be

likely for a fuzzer to generate full line coverage, the other should be difficult for the

fuzzer to generate full line coverage.

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Quiz 2

4

QUIZ 2
ADMINISTRIVIA

0

5

10

15

20

25

30

35

40

45

50

Quiz 2 Scores

5

QUIZ 2
ADMINISTRIVIA

P ~8%
A ~22%
B ~25%
C ~17%
D ~15%
F ~13%

Quiz 2 Scores

33

45.5

avg(~39)

median(40.5)

SYMBOLIC EXECUTION
EECS 677: Software Security Evaluation

Drew Davidson

7

PREVIOUSLY: FUZZING
OUTLINE / OVERVIEW

GENERATING RANDOM TEST CASES

Surprisingly effective in practice

The random “fuzz” of white noise

Main challenge is exploring “new” behavior

8

RESEARCH DIRECTION: “GUNKING”
FUZZING

FUZZING AS ADVERSARIAL RECON

Fuzzing is so good at finding bugs that even the bad guys do it

PERHAPS A PROGRAM SHOULD DEPLOY ANTI-FUZZING TECH

What would that look like?

9

THE PROBLEM OF COVERAGE: STATIC
OUTLINE / OVERVIEW

This program is well-analyzed

in the abstract domain of signs

1: #include "stdlib.h"

 2: int main(){

 3: int c = getchar();

 4: if (c == 0 && c == 1) {

 5: return 1 / 0;

 6: }

 7: }

1: #include "stdlib.h"

 2: int main(){

 3: int c = getchar();

 4: if (c == 1 && c == 2) {

 5: return 1 / 0;

 6: }

 7: }

This program has an FP

in the abstract domain of signs

10

THE PROBLEM OF COVERAGE: DYNAMIC
SYMBOLIC EXECUTION

1: #include "stdlib.h"

 2: int main(){

 3: int c = getchar();

 4: if (c == 12345) {

 5: return 1 / 0;

 6: }

 7: }

11

WHAT MATTERS IS PREDICATES
SYMBOLIC EXECUTION

1: #include "stdlib.h"

 2: int main(){

 3: int c = getchar();

 4: if (c == 12345) {

 5: return 1 / 0;

 6: }

 7: }

12

PREDICATES GET IN THE WAY!
SYMBOLIC EXECUTION

1: #include "stdlib.h"

 2: int main(){

 3: int c = getchar();

 4: if (c == 12345) {

 5: c = getchar();

 6: if (c % 2 == 0) {

 7: return 1 / 0;

 8: }

 9: }

 10: }

13

SYMBOLIC EXECUTION: INTUITION
SYMBOLIC EXECUTION

14

EXPLORE BOTH SIDES OF PREDICATE!
SYMBOLIC EXECUTION: INTUITION

1: #include "stdlib.h"

 2: int main(){

 3: int c = getchar();

 4: if (c == 12345) {

 5: c = getchar();

 6: if (c % 2 == 0) {

 7: return 1 / 0;

 8: }

 9: }

 10: }

15

THE SYMBOLIC EXECUTION TREE
SYMBOLIC EXECUTION

At each line of the program:

- Advance the symbolic program state

- Split the symbolic state into 2 versions

1) Satisfies the branch predicate

2) Does not satisfy the branch predicate

1: #include "stdlib.h"

 2: int main(){

 3: int c = getchar();

 4: if (c == 12345) {

 5: c = getchar();

 6: if (c % 2 == 0) {

 7: return 1 / 0;

 8: }

 9: }

 10: }

16

ELIMINATING INFEASIBLE PATHS
SYMBOLIC EXECUTION

1: #include "stdlib.h"

 2: int main(){

 3: int c = getchar();

 4: if (c == 12345) {

 5: c = getchar();

 6: if (c % 2 == 0) {

 7: return 1 / 0;

 8: }

 9: }

 10: }

17

THE MAGIC OF THE SOLVER
SYMBOLIC EXECUTION

SAT
Boolean

equation

Satisfying

assignment

SMT
Somewhat

arbitrary

equation

Satisfying

assignment

18

THE SYMBOLIC EXECUTION TREE
SYMBOLIC EXECUTION

At each line of the program:

- Advance the symbolic program state

- Split the symbolic state into 2 versions

1) Satisfies the branch predicate

2) Does not satisfy the branch predicate

ENSURE FEASIBILITY

1: #include "stdlib.h"

 2: int main(){

 3: int c = getchar();

 4: if (c == 12345) {

 5: c = getchar();

 6: if (c % 2 == 0) {

 7: return 1 / 0;

 8: }

 9: }

 10: }

19

SOUNDNESS / COMPLETENESS
SYMBOLIC EXECUTION

Sound!

Complete!

May not terminate

WRAP-UP

SYMBOLIC EXECUTION

20

Take all paths, don’t commit to values

	Slide 1: Exercise 28
	Slide 2: Exercise 28 Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Quiz 2
	Slide 5: Quiz 2
	Slide 6: Symbolic Execution
	Slide 7: Previously: Fuzzing
	Slide 8: Research Direction: “Gunking”
	Slide 9: The problem of coverage: Static
	Slide 10: The problem of coverage: Dynamic
	Slide 11: What matters is predicates
	Slide 12: Predicates get in the way!
	Slide 13: Symbolic Execution: Intuition
	Slide 14: Explore both sides of Predicate!
	Slide 15: The symbolic execution Tree
	Slide 16: Eliminating Infeasible Paths
	Slide 17: The magic of the solver
	Slide 18: The symbolic execution Tree
	Slide 19: Soundness / Completeness
	Slide 20: Wrap-up

