
EXERCISE 28
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FUZZING REVIEW

Give 2 example programs, each with 1 if statement. One of the programs should be 

likely for a fuzzer to generate full line coverage, the other should be difficult for the 

fuzzer to generate full line coverage.



EXERCISE 28 SOLUTION
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FUZZING REVIEW

Give 2 example programs, each with 1 if statement. One of the programs should be 

likely for a fuzzer to generate full line coverage, the other should be difficult for the 

fuzzer to generate full line coverage.
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QUIZ 2
ADMINISTRIVIA

P ~8%
A ~22%
B ~25%
C ~17%
D ~15%
F ~13%

 

 

  

  

  

  

  

  

  

  

  

Quiz 2 Scores

33

45.5

avg( ~39)

median(40.5)
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PREVIOUSLY: FUZZING
OUTLINE /  OVERVIEW

GENERATING RANDOM TEST CASES

Surprisingly effective in practice

The random “fuzz” of white noise

Main challenge is exploring “new” behavior
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RESEARCH DIRECTION: “GUNKING”
FUZZING

FUZZING AS ADVERSARIAL RECON

Fuzzing is so good at finding bugs that even the bad guys do it

PERHAPS A PROGRAM SHOULD DEPLOY ANTI-FUZZING TECH

What would that look like?
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THE PROBLEM OF COVERAGE: STATIC
OUTLINE /  OVERVIEW

This program is well-analyzed

in the abstract domain of signs

1: #include "stdlib.h"

  2: int main(){

  3: int c = getchar();

  4: if (c == 0 && c == 1) {

  5: return 1 / 0;

  6: }

  7: }

1: #include "stdlib.h"

  2: int main(){

  3: int c = getchar();

  4: if (c == 1 && c == 2) {

  5: return 1 / 0;

  6: }

  7: }

This program has an FP 

in the abstract domain of signs
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THE PROBLEM OF COVERAGE: DYNAMIC
SYMBOLIC EXECUTION

1: #include "stdlib.h"

  2: int main(){

  3: int c = getchar();

  4: if (c == 12345) {

  5: return 1 / 0;

  6: }

  7: }
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WHAT MATTERS IS PREDICATES
SYMBOLIC EXECUTION

1: #include "stdlib.h"

  2: int main(){

  3: int c = getchar();

  4: if (c == 12345) {

  5: return 1 / 0;

  6: }

  7: }



12

PREDICATES GET IN THE WAY!
SYMBOLIC EXECUTION

1: #include "stdlib.h"

  2: int main(){

  3: int c = getchar();

  4: if (c == 12345) {

  5: c = getchar();

  6: if (c  % 2 == 0 ) {

  7: return 1 / 0;

  8: }

  9: }

 10: } 
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SYMBOLIC EXECUTION: INTUITION
SYMBOLIC EXECUTION
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EXPLORE BOTH SIDES OF PREDICATE!
SYMBOLIC EXECUTION: INTUITION

1: #include "stdlib.h"

  2: int main(){

  3: int c = getchar();

  4: if (c == 12345) {

  5: c = getchar();

  6: if (c  % 2 == 0 ) {

  7: return 1 / 0;

  8: }

  9: }

 10: } 
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THE SYMBOLIC EXECUTION TREE
SYMBOLIC EXECUTION

At each line of the program:

- Advance the symbolic program state

- Split the symbolic state into 2 versions

1) Satisfies the branch predicate

2) Does not satisfy the branch predicate

1: #include "stdlib.h"

  2: int main(){

  3: int c = getchar();

  4: if (c == 12345) {

  5: c = getchar();

  6: if (c  % 2 == 0 ) {

  7: return 1 / 0;

  8: }

  9: }

 10: } 
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ELIMINATING INFEASIBLE PATHS
SYMBOLIC EXECUTION

1: #include "stdlib.h"

  2: int main(){

  3: int c = getchar();

  4: if (c == 12345) {

  5: c = getchar();

  6: if (c  % 2 == 0 ) {

  7: return 1 / 0;

  8: }

  9: }

 10: } 



17

THE MAGIC OF THE SOLVER
SYMBOLIC EXECUTION

SAT
Boolean

equation

Satisfying

assignment

SMT
Somewhat

arbitrary

equation

Satisfying

assignment
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THE SYMBOLIC EXECUTION TREE
SYMBOLIC EXECUTION

At each line of the program:

- Advance the symbolic program state

- Split the symbolic state into 2 versions

1) Satisfies the branch predicate

2) Does not satisfy the branch predicate

ENSURE FEASIBILITY

1: #include "stdlib.h"

  2: int main(){

  3: int c = getchar();

  4: if (c == 12345) {

  5: c = getchar();

  6: if (c  % 2 == 0 ) {

  7: return 1 / 0;

  8: }

  9: }

 10: } 
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SOUNDNESS / COMPLETENESS
SYMBOLIC EXECUTION

Sound!

Complete!

May not terminate 



WRAP-UP

SYMBOLIC EXECUTION

20

Take all paths, don’t commit to values
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