EXERCISE 28

FUZZING REVIEW

Give 2 example programs, each with 1 if statement. One of the programs should be
likely for a fuzzer to generate full line coverage, the other should be difficult for the
fuzzer to generate full line coverage.

H i e [wde lLS{‘r/lfo,L\ ' | ﬂfﬂc[ud@ \[!M}d.V”
¥ minl) (It main()
it A h\\f)
o= 3@‘@\'\(@3; szgﬁdﬂw()) I
L Cazo)t (& =2 du45)!
rtfor v 1/0'}

P&’(FTAM\ \/0) > (
! s

EXERCISE 28 SOLUTION

FUZZING REVIEW

Give 2 example programs, each with 1 if statement. One of the programs should be
likely for a fuzzer to generate full line coverage, the other should be difficult for the
fuzzer to generate full line coverage.

Quiz 2

ADMINISTRIVIA
AND
ANNOUNCEMENTS

50

45

40

35

QUIZ 2

ADMINISTRIVIA

Quiz 2 Scores

~8%
~22%
~25%
~17%
~15%
~13%

QUIZ 2

ADMINISTRIVIA

Quiz 2 Scores

45.5

median(40.5)

* avg(~39)

33

\@%"f

SYMBOLIC EXECUTION

EECS 677: Software Security Evaluation

Drew Davidson

PREVIOUSLY: FUZZING

OUTLINE / OVERVIEW

GENERATING RANDOM TEST CASES
Surprisingly effective in practice
Main challenge is exploring “new” behavior

The random “fuzz” of white noise

FUZZING

RESEARCH DIRECTION: “GUNKING” DETOUR

FUZZING AS ADVERSARIAL RECON

Fuzzing is so good at finding bugs that even the bad guys do it

PERHAPS A PROGRAM SHOULD DEPLOY ANTI-FUZZING TECH

What would that look like?

THE PROBLEM OF COVERAGE: STATIC

OUTLINE / OVERVIEW

This program is well-analyzed This program has an FP
in the abstract domain of signs in the abstract domain of signs
"stdlib.h" "stdlib.h"
main () { main () {
c = getchar(); c = getchar();
if (¢ == 0 && c == 1) { if (¢ == 1 && c == 2) {

return 1 / 0; return 1 / 0;

} }

ME PROBLEM OF COVERAGE: DYNAMIC

"stdlib.h"
main () {
c = getchar();
if (c == 12345) |

return 1 / 0;

}
}

% WHAT MATTERS IS PREDICATES

"stdlib.h"
: int main () {
int ¢ = getchar();

if To——32345) { ¢ 7 |3 ()([((If)_

return 1 / 0;

}

1 o O B W DN -

PREDICATES GET IN THE WAY!

SYMBOLIC EXECUTION

"stdlib.h"
main () {
c = getchar ()
if (c == 12345) {
c = getchar();
if (¢ 5 2 == 0) {

return 1 / 0;

12

%SYM BOLIC EXECUTION: INTUITION
w&m

gme Wﬂ@%m\b

W\QKQ(%L‘\MVP
</

%XPLORE BOTH SIDES OF PREDICATE!
SYMBOLIC EXECUTION: INTUITION

Qe ol

IR e X S
B - A Yz =T~ d== iy
W o=y ny =140

} return 1 / 0; q&'C:ﬁ/\X]al&a%r

The =gy !z 34y

| .
7‘\ ~ %O C"} éc\: C= ﬁ N\ a/‘l‘-lk;f“f-ﬁ'/\ﬁ,ﬁo’z—*@
QQ: c.:Jsf\ j:z]u%’/l F/A,fg

}

O W o Jo U WK

'_\

©o)

THE SYMBOLIC EXECUTION TREE

SYMBOLIC EXECUTION

At each line of the program:
- Advance the symbolic program state
- Split the symbolic state into 2 versions
1) Satisfies the branch predicate
2) Does not satisfy the branch predicate

"stdlib.h"
main () {
c = getchar();
if (c == 12345) |
c = getchar();
if (¢ % 2 ==) |

return 1 / 0;

}

'_\

O W O J o U x W DN+

ELIMINATING INFEASIBLE PATHS

SYMBOLIC EXECUTION

"stdlib.h"

: int main () {

int ¢ = getchar();

if (¢ == 12345) {
—e—= \jctplldl_ () M
if (¢ % 2 == 0) {

return 1 / 0;

}

16

% THE MAGIC OF THE SOLVER
SYMBOLIC EXECUTION

AL AC AR AP

Satisfying
assignment

Boolean

& VAR a_ equation
(A

Somewhat Satisfying
arbitrary assignment

equation

18

THE SYMBOLIC EXECUTION TREE

SYMBOLIC EXECUTION

At each line of the program: \ ‘L f ((
- Advance the symbolic program state [A /M) A)
- Split the symbolic state into 2 versions
1) Satisfies the branch predicate _ f [{WL C(/],W
2) Does not satisfy the branch predicate /_,\/—%
ENSURE FEASIBILITY 0& X = 0 / orL
1: "stdlib.h"
2: main () { /‘A?
3: c = getchar();
4: if (c ==g12345)(){ __F (Qﬁ/c 02,.,, D
5: c = getchar();
6: if (¢ % 2 == 0
7 return 1 / O 5
8: }
L Z/OL als
10: }

SYMBOLIC EXECUTION

% SOUNDNESS / COMPLETENESS

Sound!

Complete!

May not terminate @

WRAP-UP

SYMBOLIC EXECUTION

Take all paths, don’t commit to values

20

	Slide 1: Exercise 28
	Slide 2: Exercise 28 Solution
	Slide 3: Administrivia and Announcements
	Slide 4: Quiz 2
	Slide 5: Quiz 2
	Slide 6: Symbolic Execution
	Slide 7: Previously: Fuzzing
	Slide 8: Research Direction: “Gunking”
	Slide 9: The problem of coverage: Static
	Slide 10: The problem of coverage: Dynamic
	Slide 11: What matters is predicates
	Slide 12: Predicates get in the way!
	Slide 13: Symbolic Execution: Intuition
	Slide 14: Explore both sides of Predicate!
	Slide 15: The symbolic execution Tree
	Slide 16: Eliminating Infeasible Paths
	Slide 17: The magic of the solver
	Slide 18: The symbolic execution Tree
	Slide 19: Soundness / Completeness
	Slide 20: Wrap-up

