
EXERCISE #2

1

OVERVIEW REVIEW

Write your name and answer the following on a piece of paper

• The companion to static analysis (analysis without running the target program) is

dynamic analysis (analysis that includes running the target program). Give an

example of a dynamic analysis.

ADMINISTRIVIA
AND
ANNOUNCEMENTS

- Miss a class? It’s not too late to get points for the

check-in assignment!

- The Entry Survey: results and thoughts

ADMINISTRIVIA
AND
ANNOUNCEMENTS

“Please record lectures”

ADMINISTRIVIA
AND
ANNOUNCEMENTS

“My given name is <X> but I go by <Y>”

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Lots of interest in learning about vulnerabilities

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Some concern about workload

ADMINISTRIVIA
AND
ANNOUNCEMENTS

How long are the quizzes?

ADMINISTRIVIA
AND
ANNOUNCEMENTS

“I’ll probably be late a lot”

VISUALIZING CODE
EECS 677: Software Security Evaluation

Drew Davidson

LAST TIME: OVERVIEW
10

REVIEW: OVERVIEW

Discussed the insufficiency of manual source code analysis for security

evaluation.

Described the need to deal with abstractions of software. These abstractions

can do two things:

• Emphasize some under-appreciated aspect of the target program

• Simplify or ease a form of reasoning about the target program

LECTURE OUTLINE

• Instruction Flowcharts

• Control Flow Graphs

VISUALIZING PROGRAMS
12

Reading code is hard!
• It’s really important to determine

how code flows from one instruction
to the next

INSTRUCTION FLOWCHARTS

CODE GRAPHS
13

Program analysis relies heavily on two questions
• (How) can we get to a particular program point?
• What is the program configuration at a given point?

Helpful to structure program instructions as a graph
• Visualize transfer of control
• Avail ourselves of graph analyses (e.g. reachabilty)

INSTRUCTION FLOWCHARTS

14

FLOWCHARTS
ABSTRACTING CODE: INSTRUCTION FLOWCHARTS

Step 1

Step 2

Step 3

Step 4

Instruction Flowchart

Step 5

NOTATION

NODES ARE INSTRUCTIONS

EDGES GO TO SUCCESSOR NODE

OPERATION

EXECUTE CURRENT INSTRUCTION

PROCEED TO SUCCESSOR NODE

15

FLOWCHART EXAMPLE – HOW TO FLOSS
ABSTRACTING CODE: INSTRUCTION FLOWCHARTS

Stand with your feet shoulder-width

apart, hands at your sides

Sweep your arms to the left

Push your hips to the right while

swinging your arms up to the left

Pull both arms back to the right and

swing your hips through

Sweep both arms down in front of

your body to the left

Swing your arms to the right while

pushing your hips to the left

NOTATION

NODES ARE INSTRUCTIONS

EDGES GO TO SUCCESSOR NODE

OPERATION

EXECUTE CURRENT INSTRUCTION

PROCEED TO SUCCESSOR NODE

16

FLOWCHARTS – CONDITIONALS

NOTATION

NODES ARE INSTRUCTIONS

EDGES GO TO SUCCESSOR NODE

OPERATION

EXECUTE CURRENT INSTRUCTION

PROCEED TO SUCCESSOR NODE

ABSTRACTING CODE: INSTRUCTION FLOWCHARTS

(DISAMBIGUATED WITH CONDITIONS)

(ACCORDING TO CONDITION)

S

Stand with your feet shoulder-width

apart, hands at your sides

Sweep your arms to the left

Push your hips to the right while

swinging your arms up to the left

Pull both arms back to the right and

swing your hips through

Sweep both arms down in front of

your body to the left

Swing your arms to the right while

pushing your hips to the left

17

FLOWCHARTS – CONDITIONALS

NOTATION

NODES ARE INSTRUCTIONS

EDGES GO TO SUCCESSOR NODE

OPERATION

EXECUTE CURRENT INSTRUCTION

PROCEED TO SUCCESSOR NODE

ABSTRACTING CODE: INSTRUCTION FLOWCHARTS

Stand with your feet shoulder-width

apart, hands at your sides

Sweep your arms to the left

Push your hips to the right while

swinging your arms up to the left

Pull both arms back to the right and

swing your hips through

Sweep both arms down in front of

your body to the left

Swing your arms to the right while

pushing your hips to the left

(DISAMBIGUATED WITH CONDITIONS)

(ACCORDING TO CONDITION)

S

Are you a 12 year old Fortnite

player?

true
false

stop

18

FLOWCHARTS – FOR CODE?!?!?!!
ABSTRACTING CODE: INSTRUCTION FLOWCHARTS

int a;

a = 7;

a += 2;

int b;

b = 9 + c * 2;

Source Code

int a;

a = 7;

a += 2;

int b;

Instruction Flowchart

b = 9 + c * 2;

NOTATION

NODES ARE INSTRUCTIONS

EDGES GO TO SUCCESSOR NODE

OPERATION

EXECUTE CURRENT INSTRUCTION

PROCEED TO SUCCESSOR NODE

(DISAMBIGUATED WITH CONDITIONS)

(ACCORDING TO CONDITION)

S

Should this be

just 1 instruction?

CODE FLOWCHARTS
19

a = 7

if (a < 4)

a = 7

a += 2

a = 7;

if (a < 4){

 a = 7;

}

a += 2;

source code Instruction Flowgraph

false

true

NOTATION

NODES ARE INSTRUCTIONS

EDGES GO TO SUCCESSOR
NODES UNDER APPROPRIATE
CONDITION

OPERATION

EXECUTE CURRENT
INSTRUCTION

PROCEED TO THE RIGHT
SUCCESSOR

INSTRUCTION FLOWCHARTS

20

FLOWCHARTS: VISUALIZING CONTROL

if a < b

if a < 10

a = a + b

if b < 3

a = 1

return

void funk(int a, int b){

 if (a < b){

 if (a < 10){

 a = a + b;

 }

 }

 if (b < 3){

 a = 1;

 }

 return;

}

ABSTRACTING CODE: INSTRUCTION FLOWCHARTS

21

FLOWCHARTS: VISUALIZING CONTROL

if a < b

if a < 10

a = a + b

if b < 3

a = 1

return

void funk(int a, int b){

 if (a < b){

 if (a < 10){

 a = a + b;

 }

 }

 if (b < 3){

 a = 1;

 }

 return;

}

ABSTRACTING CODE: INSTRUCTION FLOWCHARTS

if a < b

if a < 10

a = a + b

if b < 3

a = 1

return

false

false

true

true

false

true

22

FLOWCHARTS: A USEFUL TOOL

MAYBE THIS IS HOW YOU LEARNED TO
THINK ABOUT CODE!

IT’S A NICE WAY TO VISUALIZE THE
CONTROL FLOW OF THE PROGRAM

WE CAN EXTEND THIS INTUITION FOR
PROGRAM ANALYSIS

ABSTRACTING CODE: INSTRUCTION FLOWCHARTS

LECTURE OUTLINE

• Instruction Flowcharts

• Control Flow Graphs

24

COMPACTING THE FLOW CHART
ABSTRACTING CODE: CONTROL-FLOW GRAPHS

FROM FLOWCHARTS TO CONTROL FLOW
GRAPHS

• This graph is needlessly verbose

• Too many nodes that communicate
nothing

WHAT IF WE ELIMINATE THE 1
INSTRUCTION PER NODE CONSTRAINT?

• Attempt to use as few edges as
possible

25

BASIC BLOCKS
ABSTRACTING CODE: CONTROL-FLOW GRAPHS

DEFINITION: SEQUENCE OF INSTRUCTIONS GUARANTEED TO
EXECUTE WITHOUT INTERRUPTION

26

BASIC BLOCKS BOUNDARIES
ABSTRACTING CODE: CONTROL-FLOW GRAPHS

TWO DISTINGUISHED INSTRUCTIONS IN A BLOCK (MAY BE THE
SAME INSTRUCTION)

• Leader: An instruction that begins the block

• Terminator: An instruction that ends the block

27

BASIC BLOCKS BOUNDARIES
ABSTRACTING CODE: CONTROL-FLOW GRAPHS

TWO DISTINGUISHED INSTRUCTIONS IN A BLOCK (MAY BE THE
SAME INSTRUCTION)

• Leader: An instruction that begins the block

• Terminator: An instruction that ends the block

A jump (goto, if statement, loop construct)

The first instruction in the procedure

The target of a jump

The last instruction of the procedure

A call (We’ll use a special LINK edge)

The instruction after an terminator

28

BENEFITS OF BASIC BLOCKS
ABSTRACTING CODE: CONTROL-FLOW GRAPHS

HIGH-LEVEL VISUALIZATION OF CONTROL CONSTRUCTS

If-stmt

(head)

(True

branch)

(after)

false

Loops

(head)

(body)

(after)

jmp

If-else

(head)

(True

branch)

(after)

jmp

(False

branch)

falsejmp

true

29

NOTE CFGS ARE PER-FUNCTION OBJECTS
ABSTRACTING CODE: CONTROL-FLOW GRAPHS

int foo(int c){

 a = 1;

 b = 2;

 if (c > 5){

 c = 1;

 }

 return 0;

}

int main(){

 int local = 1;

 int ret = foo(local);

 if (ret > 1){

 return 1;

 }

 return 2;

}

1 CFG for foo

1 CFG for main

Special “link edge” to connect call to its return site

30

EXERCISE: BUILD THE CFG
ABSTRACTING CODE: CONTROL-FLOW GRAPHS

int foo(int c){

 a = 1;

 b = 2;

 if (c > 5){

 c = 1;

 }

 return 0;

}

int main(){

 int local = 1;

 int ret = foo(local);

 if (ret > 1){

 return 1;

 }

 return 2;

}

LECTURE END!

• Instruction Flowcharts

• Control Flow Graphs

SUMMARY

DESCRIBED THE NEED TO VISUALIZE
PROGRAMS IN WAYS OTHER THAN A
FLAT LISTING OF SOURCE CODE

SHOWED ONE SUCH VISUALIZATION, THE
CONTROL-FLOW GRAPH

32

NEXT TIME

SHOW ADDITIONAL PROGRAM
ABSTRACTIONS TO SIMPLIFY ANALYSIS,
IN PARTICULAR SSA FORM

USE THESE CONCEPTS TO INTRODUCE
LLVM IR

33

	Slide 1: ExerCise #2
	Slide 2: Administrivia and Announcements
	Slide 3: Administrivia and Announcements
	Slide 4: Administrivia and Announcements
	Slide 5: Administrivia and Announcements
	Slide 6: Administrivia and Announcements
	Slide 7: Administrivia and Announcements
	Slide 8: Administrivia and Announcements
	Slide 9: Visualizing CODE
	Slide 10: Last Time: Overview
	Slide 11: Lecture Outline
	Slide 12: Visualizing Programs
	Slide 13: Code Graphs
	Slide 14: FlowCharts
	Slide 15: FlowChart Example – How to Floss
	Slide 16: FlowChartS – COnditionals
	Slide 17: FlowChartS – COnditionals
	Slide 18: Flowcharts – For Code?!?!?!!
	Slide 19: CODE FlowCharts
	Slide 20: FlowCharts: Visualizing Control
	Slide 21: FlowCharts: Visualizing Control
	Slide 22: FlowCharts: A Useful TOOL
	Slide 23: Lecture Outline
	Slide 24: Compacting The Flow Chart
	Slide 25: Basic Blocks
	Slide 26: Basic Blocks Boundaries
	Slide 27: Basic Blocks Boundaries
	Slide 28: BENEFITS of Basic Blocks
	Slide 29: Note CFGs are PER-Function Objects
	Slide 30: Exercise: Build the CFG
	Slide 31: Lecture END!
	Slide 32: Summary
	Slide 33: Next TiME

