
EXERCISE #8

1

LATTICES REVIEW

Write your name and answer the following on a piece of paper

• Recall that the set of English words, ranked by substring inclusion, forms a poset

but NOT a lattice. Explain why and give an example

Reflexive: every word includes the substring of itself

Anti-symmetric: if two words include substrings of each other, they must be the same word

Transitive: if a is a substring b, and b is a substring of c, then a is a substring of c

Not a lattice: consider the English words a and he. They have no greatest lower bound

ADMINISTRIVIA
AND
ANNOUNCEMENTS

ABSTRACT
INTERPRETATION
EECS 677: Software Security Evaluation

Drew Davidson

LAST TIME: LATTICES
4

REVIEW: STATIC ANALYSIS

DESCRIBED FORMAL CONDITIONS TO GUARANTEE
TERMINATION

- Dataflow facts can be ordered into a

complete lattice

- Iterative application of a monotonic function

can achieve a fixpoint

It’s a lattice!

SOME PRACTICAL LIMITATIONS

- No guarantee about how long the algorithm

will run

- Sadly out of luck if we don’t have a

complete lattice

LECTURE OUTLINE

• Abstract Interpretation

• LLVM (time permitting)

6

ANALYSIS PRECISION
ABSTRACT INTERPRETATION

PRECISION / EFFICIENCY TRADEOFF

With a complete lattice we can, in

theory, eventually terminate

The shallower the lattice, the faster the

fixpoint

Choose to approximate the lattice

That’s not a very strong guarantee!

7

ANALYSIS PRECISION
ABSTRACT INTERPRETATION

PRECISION / EFFICIENCY TRADEOFF

With a complete lattice we can, in

theory, eventually terminate

The shallower the lattice, the faster the

fixpoint

Choose to approximate the lattice

That’s not a very strong guarantee!

8

LET’S CONSIDER A VERY APPROXIMATE LATTICE
ABSTRACT INTERPRETATION

ABSTRACT DOMAIN OF SIGNS

pos neg

num

zero

∅

{00,01,10,11}

{01,10,11} {00,10,11} {00,01,11} {00,01,10}

{00,01} {00,10} {00,11}{01,10} {01,11} {10,11}

{00} {01} {10} {11}

9

ANALYSIS PRECISION
ABSTRACT INTERPRETATION

1. int x = 0;

2. int y = 0;

3. while (INPUT){

4. if (x > 0)

5. if (x < 0)

6. y = y / 0;

7. x++;

8. }

9. return;

1. int x = 0;

2. int y = 0;

4. if (x > 0){

3. while (INPUT){

true

false
5. if (x < 0){

6. y = y / 0;

7. x++

8. }

9. return;

true

false true
false

10

THE ABSTRACTION FUNCTION
ABSTRACT INTERPRETATION

FROM THE CONCRETE DOMAIN TO THE ABSTRACT

α({0}) = zero

α(S) = if all values in S are greater than 0 then pos

else if all values in S are less than 0 then neg

else unk

11

THE CONCRETIZATION FUNCTION
ABSTRACT INTERPRETATION

FROM THE ABSTRACT DOMAIN TO THE CONCRETE

γ(zero) = {0}

γ(pos) = {all positive ints}

γ(neg) = {all negative ints}

γ(num) = Int (i.e., all ints)

12

A DETOUR INTO FORMALIZATION
ABSTRACT INTERPRETATION

13

GALOIS CONNECTION
ABSTRACT INTERPRETATION

A Galois connection is a pair of functions, α and γ between

two partially ordered sets (C, ⊆) and (A, ≤), such that both

of the following hold.

1.∀ a ∈ A, c ∈ C: α(c) ≤ a iff c ⊆ γ(a)

2.∀ a ∈ A: α(γ(a)) ≤ a

14

END FORMALIZATION DETOUR
ABSTRACT INTERPRETATION

ABSTRACT DOMAINS IN PRACTICE
15

STATIC ANALYSIS

“SINGLETON INTEGER SETS”

- You know the number, or you don’t

INTERVALS

- You know a concrete

range

PROPERTY EXISTENCE

- A property does or does

not hold

SECTION SUMMARY
16

STATIC ANALYSIS

STATIC ANALYSIS GIVES US AN IMPORTANT
GUARANTEE

- Completeness of bug finding /

Soundness of verification

- Thus far we’ve been using source code

Anything that isn’t crystal clear to a static analysis
tool probably isn’t clear to your fellow
programmers, either. The classic hacker disdain for
“bondage and discipline languages” is short-
sighted – the needs of large, long-lived, multi-
programmer projects are just different than the
quick work you do for yourself.

- John Carmack's Static Code Analysis post

https://web.archive.org/web/20140713032309/http:/www.altdev.co/2011/12/24/static-code-analysis/

LECTURE OUTLINE

• Abstract Interpretation

• LLVM

APPLYING STATIC ANALYSIS
18

STATIC ANALYSIS

WE KNOW THE THEORY OF STATIC ANALYSIS

- But how do we apply that theory in practice?

- Thus far we’ve been using source code

as a target (that’s limited!)

LLVM
19

LLVM: OVERVIEW

Is this the LLVM logo?

The LLVM Project is a collection of modular and reusable

compiler and toolchain technologies. Despite its name, LLVM

has little to do with traditional virtual machines. The name

"LLVM" itself is not an acronym; it is the full name of the

project.

LLVM
20

LLVM: OVERVIEW

No, it’s a Yu-gi-oh card!

The LLVM Project is a collection of modular and reusable

compiler and toolchain technologies. Despite its name, LLVM

has little to do with traditional virtual machines. The name

"LLVM" itself is not an acronym; it is the full name of the

project.

LLVM
21

LLVM: OVERVIEW

The LLVM Project is a collection of modular and reusable

compiler and toolchain technologies. Despite its name, LLVM

has little to do with traditional virtual machines. The name

"LLVM" itself is not an acronym; it is the full name of the

project.

This is the actual LLVM logo

LLVM: WHY WE USE IT
22

LLVM: OVERVIEW

Let’s consider two goals of software security
evaluation
• Discover vulnerabilities in “trusted” code
• Discover attacks in “untrusted” code

Most useful for

this one

LLVM: WHY WE USE IT
23

LLVM: OVERVIEW

Genericity

LLVM: WHY WE USE IT
24

LLVM: OVERVIEW

LLVM High-Level Architecture

Common

Middle-end
Front-end1

Front-end2

Front-endn

Back-end1

Back-end2

Back-endm

C

Haskell

Ruby

…

Analysis /

Optimization1

…

Common

IR

Analysis /

Optimizationk

…

Common

IR

X64

MIPS

WASM

Genericity

25

SECTION SUMMARY
LLVM

LLVM PROVIDES A GOOD BASIS FOR ANALYSIS

Allows us to avoid a lot of the parsing /

language specific details that we view as

boilerplate

Gives us a good analysis target in llvm

bitcode

NEXT TIME

BEGIN LOOKING AT A PROGRAM
REPRESENTATION WE CAN USE FOR TO
BUILD OUR OWN ANALYSES

26

	Slide 1: ExerCise #8
	Slide 2: Administrivia and Announcements
	Slide 3: Abstract Interpretation
	Slide 4: Last Time: Lattices
	Slide 5: Lecture Outline
	Slide 6: Analysis Precision
	Slide 7: Analysis Precision
	Slide 8: Let’s Consider A Very Approximate Lattice
	Slide 9: Analysis Precision
	Slide 10: The Abstraction Function
	Slide 11: The ConCretization Function
	Slide 12: A Detour into formalization
	Slide 13: Galois Connection
	Slide 14: End Formalization Detour
	Slide 15: Abstract Domains in Practice
	Slide 16: Section Summary
	Slide 17: Lecture Outline
	Slide 18: Applying Static Analysis
	Slide 19: LLVM
	Slide 20: LLVM
	Slide 21: LLVM
	Slide 22: LLVM: Why We Use It
	Slide 23: LLVM: Why We Use It
	Slide 24: LLVM: Why We Use It
	Slide 25: Section Summary
	Slide 26: Next Time

