
EXERCISE #18

1

CFI REVIEW

Write your name and answer the following on a piece of paper

What is the difference between the CFI protections implemented by LLVM and

Microsoft’s Control Flow Guard?

ADMINISTRIVIA
AND
ANNOUNCEMENTS

OBJECT-ORIENTED CALL
GRAPHS
EECS 677: Software Security Evaluation

Drew Davidson

CLASS PROGRESS

ANALYSIS UNDERLYING OUR
ENFORCEMENT NEEDS

4

5

LAST TIME: CFI
REVIEW: LAST LECTURE

LIMIT THE DESTINATION OF INDIRECT
CONTROL TRANSFER

Motivation

– Important against return-oriented programming

– Useful against other types of control-hijacking

memory attacks as well

Implementation

– Requires (over)approximate knowledge of

control transfer targets

– Interpose on a control transfer to

OVERVIEW

HOW DO WE FIGURE OUT CONTROL
TRANSFER TARGETS IN THE FIRST PLACE?

6

7

RECALL OUR CFI MOTIVATING EXAMPLE
CALL GRAPH ANALYSIS

LECTURE OUTLINE

• Call Graphs

• Dynamic Dispatch

• Algorithms

9

CALL GRAPHS
A HISTORY OF COMPUTING

DIRECTED GRAPH OF FUNCTIONS

Simple Form:

- Node: function

- Edge: function call

Refined Form:

- Node: call site with

function “block”

- Edge: function call

main

f

g

up puts
16

17

3

13

LECTURE OUTLINE

• Call Graphs

• Dynamic Dispatch

• Algorithms

11

DYNAMIC DISPATCH
A HISTORY OF COMPUTING

Driver.main

22

23

A.f

C.g

24

B.g

D.g

A.g

A.init

B.init20

C.init

C.init

12

DYNAMIC DISPATCH: GETS COMPLICATED!
A HISTORY OF COMPUTING

13

DYNAMIC DISPATCH: GETS COMPLICATED!
A HISTORY OF COMPUTING

DIRECT CALLS

Not so bad

INDIRECT CALLS

Quite a bit harder: multiple targets possible!

14

DYNAMIC DISPATCH: GETS COMPLICATED!
A HISTORY OF COMPUTING

DIRECT CALLS

Not so bad

INDIRECT CALLS

Quite a bit harder: multiple targets possible!

15

CLASS HIERARCHY ANALYSIS (CHA)
A HISTORY OF COMPUTING

Object

Driver

main

A

f

B

g

C

g

D

g

CONSIDER THE SAFE OVER-APPROXIMATION

Treat call as declared type, or any subtype

16

RAPID TYPE ANALYSIS (RTA)
A HISTORY OF COMPUTING

Object

Driver

main

A

f

B

g

C

g

D

g

REFINEMENT OVER CHA
Consider only reachable code

Consider only initialized classes

17

RAPID TYPE ANALYSIS (RTA)
A HISTORY OF COMPUTING

BASIC IDEA: REFINEMENT OVER CHA
Consider only reachable code

Consider only initialized classes

Consider only reachable code

18

RAPID TYPE ANALYSIS (RTA)
A HISTORY OF COMPUTING

RTA = call graph of functions

CHA = call graph via class hierarchy analysis

W = worklist

W.push(main)

whie not W.empty:

 M = pop W

 T = allocated types in M

 T = T U allocated types in RTA callers of M

 foreach callsite(C) in M

 if C is statically-dispatched:

 add edge C to C’s static target

 else:

 M’ = methods called from M in CHA

 M’ = M’ intersect functions declared in T or T-supertypes

 add edge from M to each M’

 W.pushAll(M’)

19

RAPID TYPE ANALYSIS (RTA)
A HISTORY OF COMPUTING

public static Object v;

public static void main(String[] args){

 foo();

 bar();

}

public static void foo(){

 Object o = new A();

 v = o;

}

public static void bar(){

 v.toString();

}

AN UNSOUND ANALYSIS!

RTA will not include an edge from bar to

toString because neither bar or its parents

(main) allocated any instance that toString

could be called on

20

RAPID TYPE ANALYSIS (RTA)
A HISTORY OF COMPUTING

public static Object v;

public static void main(String[] args){

 Object o = foo();

 bar(o);

}

public static Object foo(){

 return new A();

 v = o;

}

public static void bar(Object o){

 o.toString();

}

AN UNSOUND ANALYSIS!

Call edge to A’s toString missing!

Neither bar or its callers (main) allocated a

type of A

21

BEYOND RTA
A HISTORY OF COMPUTING

ASSUMPTIONS TO STRENGTHEN ANALYSIS

Type safety?

Might not be a safe assumption

FTA adds the constraint that any method

that reads from a field can inherit the field-

compatible allocated types of any method

that could write to that field.

MTA adds the constraint that types allocated

in a method and then passed to a method

through a parameter should be compatible

with the called method’s parameter types.

MTA also adds the constraint that the return

type of each called method be added to the

set of allocated types.

XTA: add both the constraints of MTA an FTA

CHA

RTA

FTA MTA

XTA

WRAP-UP

	Slide 1: Exercise #18
	Slide 2: Administrivia and Announcements
	Slide 3: Object-Oriented Call Graphs
	Slide 4: Class Progress
	Slide 5: Last Time: CFI
	Slide 6: Overview
	Slide 7: Recall our CFI motivating example
	Slide 8: Lecture Outline
	Slide 9: Call Graphs
	Slide 10: Lecture Outline
	Slide 11: Dynamic Dispatch
	Slide 12: Dynamic Dispatch: Gets Complicated!
	Slide 13: Dynamic Dispatch: Gets Complicated!
	Slide 14: Dynamic Dispatch: Gets Complicated!
	Slide 15: Class Hierarchy Analysis (CHA)
	Slide 16: Rapid Type Analysis (RTA)
	Slide 17: Rapid Type Analysis (RTA)
	Slide 18: Rapid Type Analysis (RTA)
	Slide 19: Rapid Type Analysis (RTA)
	Slide 20: Rapid Type Analysis (RTA)
	Slide 21: Beyond RTA
	Slide 22: Wrap-up

