
EXERCISE #17

1

MEMORY ATTACK REVIEW

Write your name and answer the following on a piece of paper

Describe how a stack canary protects against return-oriented programming

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Basically halfway through the semester

- Time to check in on how things are
going

Second reading assigned

- The original paper on CFI

CONTROL-FLOW
INTEGRITY
EECS 677: Software Security Evaluation

Drew Davidson

TOPIC CONTEXT

CONTEMPLATED A FORM OF ATTACK,
LEFT WITH A HINT OF DEFENSES

4

5

LAST TIME: MEMORY ATTACKS
REVIEW: LAST LECTURE

BUFFER OVERFLOWS

Exceed the boundary of a region

of memory, start overwriting

other program (meta)data

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f

CODE INJECTION

Overwrite a return address and

jump to your own user-written

buffer

RETURN-ORIENTED PROGRAMMING

Overwrite a return address and jump

to “gadgets” of existing code

OVERVIEW

KEEP THE CONTROL FLOW “ON RAILS”

6

LECTURE OUTLINE

• Motivation

• Implementation

considerations

• Practical manifestations

8

WE KNOW THE PROBLEM
MOTIVATION

JUMPING WHERE YOU SHOULDN’T

– This certainly includes ROP

– Might also involve other attacks

9

WE KNOW THE PROBLEM
MOTIVATION

JUMPING WHERE YOU SHOULDN’T

– This certainly includes ROP

– Might also involve other attacks

LOOK, NO RET OVERWRITE!

10

WE KNOW THE PROBLEM
MOTIVATION

JUMPING WHERE YOU SHOULDN’T

– This certainly includes ROP

– Might also involve other attacks

LOOK, NO RET OVERWRITE!

LECTURE OUTLINE

• Motivation

• Implementation

considerations

• Practical manifestations

12

HOW TO IMPLEMENT?
IMPLEMENTATION CONSIDERATIONS

NAÏVE APPROACH:

Encode the entire CFG into the program text

13

CALL GRAPH ANALYSIS
IMPLEMENTATION CONSIDERATIONS

NAÏVE APPROACH:

Encode the entire CFG into the program text

14

HOW TO IMPLEMENT?
IMPLEMENTATION CONSIDERATIONS

NAÏVE APPROACH:

Encode the entire CFG into the program text

ISSUES:

Dynamic: overhead

Static: precision

15

HOW TO IMPLEMENT?
IMPLEMENTATION CONSIDERATIONS

NAÏVE APPROACH:

Encode the entire CFG into the program text

ISSUES:

Dynamic: overhead

16

HOW TO IMPLEMENT?
IMPLEMENTATION CONSIDERATIONS

NAÏVE APPROACH:

Encode the entire CFG into the program text

ISSUES:

Dynamic: overhead

Static: precision

LECTURE OUTLINE

• Motivation

• Implementation

considerations

• Practical manifestations

18

INTEL CET
PRACTICAL MANIFESTATIONS

CONTROL-FLOW ENHANCEMENT TECHNOLOGY

Requires recompilation of software to support

Requires hardware support (!)

SCOPE

1) Prevent ret overwriting with a shadow stack

19

INTEL CET
PRACTICAL MANIFESTATIONS

CONTROL-FLOW ENHANCEMENT TECHNOLOGY

Requires recompilation of software to support

Requires hardware support (!)

SCOPE

1) Prevent ret overwriting with a shadow stack

2) Hardware modifications

20

INTEL CET
PRACTICAL MANIFESTATIONS

CET HARDWARE CHANGES

Altered semantics of the CALL and JMP

Added a new instruction at control-transfer targets

Moves a processor state machine into the WAIT_FOR_ENDBRANCH state

In WAIT_FOR_ENDBRANCH, next instruction must be the ENDBRANCH instruction

The new ENDBRANCH instruction

Backwards

compatible

21

MICROSOFT CONTROL FLOW GUARD
PRACTICAL MANIFESTATIONS

22

HISTORICAL DETOUR
PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

23

HISTORICAL DETOUR
PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

RECALL FROM LAST TIME…

ROP attacks considered harmful

HOW INDUSTRY RESPONDED

MS CFG as a case study in a lot of interesting

aspects of software security

24

HISTORICAL DETOUR
PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

Source: https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/

2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf

26

HISTORICAL DETOUR
PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

THIS IS AN INTERESTING TALK!

I’d recommend you watch it: https://www.youtube.com/watch?v=oOqpl-2rMTw

IT COMES WITH THE HISTORICAL BURDEN OF CONTROL FLOW GUARD

Widely-publicized issue that allowed it to be avoided

https://www.youtube.com/watch?v=oOqpl-2rMTw

28

HISTORICAL DETOUR
PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

CONTROL FLOW GUARD HAS A HISTORICAL BURDEN

Widely-publicized issue that allowed it to be avoided

We’ll get to the actual workaround, but let’s talk about its impact

29

HISTORICAL DETOUR
PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

30

CONTROL FLOW GUARD
PRACTICAL MANIFESTATIONS

DETAILS

Precision: call needs to be a valid function entry point

Enforcement: OS verifies indirect control transfer

destinations via a table in protected memory

PROTECTIONS

Protected destinations page in read-only memory

Read-only memory bit can be turned off by attacker



31

CLANG’S CFI
PRACTICAL MANIFESTATIONS

DETAILS

Precision: call needs to match type signature

Enforcement: compiler-inserted checks

WRAP-UP

	Slide 1: Exercise #17
	Slide 2: Administrivia and Announcements
	Slide 3: Control-Flow Integrity
	Slide 4: Topic Context
	Slide 5: Last Time: Memory Attacks
	Slide 6: Overview
	Slide 7: Lecture Outline
	Slide 8: We know the Problem
	Slide 9: We know the Problem
	Slide 10: We know the Problem
	Slide 11: Lecture Outline
	Slide 12: How to Implement?
	Slide 13: Call Graph Analysis
	Slide 14: How to Implement?
	Slide 15: How to Implement?
	Slide 16: How to Implement?
	Slide 17: Lecture Outline
	Slide 18: Intel CET
	Slide 19: Intel CET
	Slide 20: Intel CET
	Slide 21: Microsoft Control Flow Guard
	Slide 22: Historical Detour
	Slide 23: Historical Detour
	Slide 24: Historical Detour
	Slide 25
	Slide 26: Historical Detour
	Slide 27
	Slide 28: Historical Detour
	Slide 29: Historical Detour
	Slide 30: Control Flow Guard
	Slide 31: Clang’s CFI
	Slide 32: Wrap-up

