EXERCISE #17

MEMORY ATTACK REVIEW
Write your name and answer the following on a piece of paper

Describe how a stack canary protects against return-oriented programming

7 < <\) fdm»

bef ., §/{¢(Mufcj
']'\’ Q/ffﬂw CW‘?

Second reading assigned

- The original paper on CFI

Basically halfway through the semester

- Time to check in on how things are

ADMINISTRIVIA going
AND

ANNOUNCEMENTS

CONTROL-FLOW
INTEGRITY

EECS 677: Software Security Evaluation

Drew Davidson

TOPIC CONTEXT

CONTEMPLATED A FORM OF ATTACK,
LEFT WITH A HINT OF DEFENSES

LAST TIME: MEMORY ATTACKS

REVIEW: LAST LECTURE

BUFFER OVERFLOWS CODE INJECTION RETURN-ORIENTED PROGRAMMING
Exceed the boundary of a region Overwrite a return address and Qverwrite a return address and jump

of memory, start overwriting jump to your own user-written to “gadgets” of existing code

other program (meta)data buffer

"M"!(/’Cc"L CJV"’V&’
A"/«4 he Lo

Program instructions (binary sequences) Program data & metadata\l / User data _
£0le £|70|8 1le1|53[9alc0/0e|£5(b 7|6 1o 4|fb|0 1[b3|5 1|3 0|8 dg YOS |¢ 4 8BI3EE2|V 1|9 5k 6le £|3 4lbal4 7|6€/8 0je {3 £

)

N

OVERVIEW
KEEP THE CONTROL FLOW “ON RAILS”

LECTURE OUTLINE ' /

* Motivation /‘Q‘X
* Implementation /‘
considerations \ \)

e Practical manifestations

WE KNOW THE PROBLEM

JUMPING WHERE YOU SHOULDN’T

— This certainly includes ROP
— Might also involve other attacks

MOTIVATION

#include <stdio.h>
#include <string.h>

struct auth {
char pass[4];
void (*func)(struct auth*);

}s

void success() { printf("Success!\n"); }
void failure() { printf("Failure\n"); }

void check(struct auth *a) {

if (strcmp(a->pass, "pass") ==
a->func = &success;
else
a->func = &failure;
}
int main(int argc, char **argv) {
struct auth a;

printf("Enter your password:\n");
scanf("%s", &a.pass);

a.func(&a);

WE KNOW THE PROBLEM

JUMPING WHERE YOU SHOULDN’T

— This certainly includes ROP
— Might also involve other attacks

LOOK, NO RET OVERWRITE!

MOTIVATION

#include <stdio.h>
#include <string.h>

struct auth {
char pass[4];
void (*func)(struct auth*);

}s

void success() { printf("Success!\n"); }
void failure() { printf("Failure\n"); }

void check(struct auth *a) {
if (strcmp(a->pass, "pass") == 0)

a->func = &success;
else
a->func = &failure;
}
int main(int argc, char **argv) {
struct auth a;

printf("Enter your password:\n");
scanf("%s", &a.pass);

a.func(&a);

WE KNOW THE PROBLEM

MOTIVATION

JUMPING WHERE YOU SHOULDN’T

— This certainly includes ROP
— Might also involve other attacks

LOOK, NO RET OVERWRITE!

10

LECTURE OUTLINE ' /

* Motivation /‘Q‘X
* Implementation /‘
considerations \ \)

e Practical manifestations

HOW TO IMPLEMENT?

IMPLEMENTATION CONSIDERATIONS
Yoo < Larm = bz
NAIVE APPROACH: _/

Encode the entire CFG into the program text

12

CALL GRAPH ANALYSIS

IMPLEMENTATION CONSIDERATIONS

NAIVE APPROACH:

Encode the entire CFG into the program text

13

HOW TO IMPLEMENT?

IMPLEMENTATION CONSIDERATIONS

NAIVE APPROACH:

Encode the entire CFG into the program text

|SSUES:

Dynamic: overhead

Static: precision

14

HOW TO IMPLEMENT?

IMPLEMENTATION CONSIDERATIONS

NAIVE APPROACH:

Encode the entire CFG into the program text

|SSUES:

Dynamic: overhead

15

HOW TO IMPLEMENT?

IMPLEMENTATION CONSIDERATIONS

NAIVE APPROACH:

Encode the entire CFG into the program text

|SSUES:

Dynamic: overhead

Static: precision

16

LECTURE OUTLINE ' /

* Motivation /‘Q‘X
* Implementation /‘
considerations \ \)

e Practical manifestations

INTEL CET

PRACTICAL MANIFESTATIONS

\owr KMrU(Cf fejqur PWCQ(/
CONTROL-FLOW ENHANCEMENT TECHNOLOGY

—
Requires recompilation of software to support Y/E ‘ JW/
g -/

Requires hardware support (!) {L“V(/W dq((

SCOPE

1) Prevent ret overwriting with a shadow stack

18

INTEL CET

PRACTICAL MANIFESTATIONS

CONTROL-FLOW ENHANCEMENT TECHNOLOGY

Requires recompilation of software to support

Requires hardware support (!)

SCOPE

1) Prevent ret overwriting with a shadow stack

2) Hardware madificertiorns \\,C\,@vd\ . 1Amqt
J4n)S -
m{)a J Iy

19

INTEL CET

PRACTICAL MANIFESTATIONS

CET HARDWARE CHANGES
Altered semantics of the CALL and JMP

Moves a processor state machine into the WAIT_FOR_ENDBRANCH state
In WAIT_FOR_ENDBRANCH, next instruction must be the ENDBRANCH instruction

Added a new instruction at control-transfer targets

The new ENDBRANCH instruction

20

MICROSOFT CONTROL FLOW GUARD

PRACTICAL MANIFESTATIONS

ConsoleApplication1 Property Pages ? *
Configuration: | Active(Debug) ~ | Platform: | Active(Win32) ~ Configuration Manager...
4 Configuration Properties Enable String Pooling
General Enable Minimal Rebuild Yes (f/Gm)
Debugging Enable C++ Exceptions Yes (fEHsc)
WC++ Directories Smaller Type Check No
4 C/C++ Basic Runtime Checks Both (/RTC1, equiv. to /RTCsu) (/RTC1)
el Runtime Library Multi-threaded Debug DLL (/MDd)
Sl Struct Member Alignment Default
RUERIREEsay Security Check Enable Security Check (/GS)

Foselieiatn Control Flow Guard Yes (/guard:cf) e

L

anguag? Enable Function-Level Linking
Precompiled Heade ;

. Enable Parallel Code Generation
Output Files -
: Enable Enhanced Instruction Set Mot Set

Browse Information
Advanced Floating Point Model Precise (/fpprecise)
All Options Enable Floating Point Exceptions

Semntandiiine Create Hotpatchable Image

4 Linker
General
Input
Manifest File
Debugging
System
Optimization
Ermbedded IDL
Windows Metadata v

AL __ 1

£ >

Control Flow Guard
Guard security check helps detect attempts to dispatch to illegal block of code. (fguard:cf)

7// HISTORICAL DETOUR
PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

HISTORICAL DETOUR

PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

RECALL FROM LAST TIME...

ROP attacks considered harmful

HOW INDUSTRY RESPONDED

MS CFG as a case study in a lot of interesting
aspects of software security

(DETOUR]

23

HISTORICAL DETOUR

PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

2012 Strategy Slide Deck

Stronger mitigations for preventing code execution

Making strategic investments in technologies that strongly mitigate code execution is one way we could get to "done”

Indirect call Control Flow Guard Split stack

2 i i) ’
i Indirect jump Enforce control flow integrity Use a separate stack for return

] on indirect calls addresses
Indirect return

? | Context switch

Load executable Image load restrictions Dynamic code restrictions

Modify
writable code Images must be signed and arbitrary Prevent dynamic code generation,
images cannot be loaded modification, and execution

Most indirect jumpiuse read-only pointers (e.g. import thunks, switch jump tables)
and conjikt switches only happen in a limited number of places

Code Integrity Guard (CIG) +
NoChildProc + NoLowLabel + NoRemotelmage

Intel CET
(hardware
shadow stack)

Not Anymore ©

Arbitrary Code Guard (ACG)

Source: https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/
2018_02_OffensiveCon/The%20Evolution%200f%20CF1%20Attacks%20and%20Defenses.pdf

24

2012 Strategy Slide Deck

Stronger mitigations for preventing code execution

Making strategic investments in technologies that strongly mitigate code execution is one way we could get to "done”

Indirect call Control Flow Guard Split stack

v Indirect jump Enforce control flow integrity Use a separate stack for return

] on indirect calls addresses
Indirect return

7 Contextswitch

Load executable Image load restrictions Dynamic code restrictions

Modify
writable code Images must be signed and arbitrary Preventdynamic code generation,

images cannot be loaded modification, and execution

Most indirect jumpiuse read-only pointers (e.g. import thunks, switch jump tables
«t switches only happen in a limited number of places

Code Integrity Guard (CIG) +
NoChildProc + NoLowlLabel + NoRemotelmage

Intel CET
(hardware
shadow stack)

Not Anymore ©

Arbitrary Code Guard (ACG)

HISTORICAL DETOUR

PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

THIS IS AN INTERESTING TALK!

I’d recommend you watch it: https:/www.youtube.com/watch?v=00gpl-2rMTw

|IT COMES WITH THE HISTORICAL BURDEN OF CONTROL FLOW GUARD
Widely-publicized issue that allowed it to be avoided

[DETOUR]

26

https://www.youtube.com/watch?v=oOqpl-2rMTw

Microsoft's overarching goal is to make exploitation financially infeasible or impossible

All RCE memory Constraining control
corruption exploits flow to “legitimate”
found in-the-wild paths breaks all of
hijack control flow these exploits as- Security teams are
written » well positioned to

Attackers often follow »
“path of least After some formal
resistance”, breaking thought, we believe
them means CFI will robustly
iIncreasing cost of mitigate against
exploitation stronger primitives

drive these changes

CFG had no formal threat model during very early development. Thought of as a way to kill ROP.

Hindsight is 20/20, but we did have formal thought around future exploit trends. See [1]

HISTORICAL DETOUR

PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

CONTROL FLOW GUARD HAS A HISTORICAL BURDEN

Widely-publicized issue that allowed it to be avoided

We’ll get to the actual workaround, but let’s talk about its impact

(DETOUR)

28

7// HISTORICAL DETOUR
PRACTICAL MANIFESTATIONS: MS CONTROL-FLOW GUARD

CONTROL FLOW GUARD

PRACTICAL MANIFESTATIONS

DETAILS
Precision: call needs to be a valid function entry point

Enforcement: OS verifies indirect control transfer
destinations via a table in protected memory

PROTECTIONS
Protected destinations page in read-only memory

Read-only memory bit can be turned off by attacker

®

30

CLANG’S CFI

PRACTICAL MANIFESTATIONS

DETAILS
Precision: call needs to match type signature

Enforcement: compiler-inserted checks

31

	Slide 1: Exercise #17
	Slide 2: Administrivia and Announcements
	Slide 3: Control-Flow Integrity
	Slide 4: Topic Context
	Slide 5: Last Time: Memory Attacks
	Slide 6: Overview
	Slide 7: Lecture Outline
	Slide 8: We know the Problem
	Slide 9: We know the Problem
	Slide 10: We know the Problem
	Slide 11: Lecture Outline
	Slide 12: How to Implement?
	Slide 13: Call Graph Analysis
	Slide 14: How to Implement?
	Slide 15: How to Implement?
	Slide 16: How to Implement?
	Slide 17: Lecture Outline
	Slide 18: Intel CET
	Slide 19: Intel CET
	Slide 20: Intel CET
	Slide 21: Microsoft Control Flow Guard
	Slide 22: Historical Detour
	Slide 23: Historical Detour
	Slide 24: Historical Detour
	Slide 25
	Slide 26: Historical Detour
	Slide 27
	Slide 28: Historical Detour
	Slide 29: Historical Detour
	Slide 30: Control Flow Guard
	Slide 31: Clang’s CFI
	Slide 32: Wrap-up

