
EXERCISE #2

1

OVERVIEW REVIEW

Write your name and answer the following on a piece of paper

• What is Rice’s Theorem? How does it interact with the halting problem?

COMPUTABILITY
EECS 677: Software Security Evaluation

Drew Davidson

ADMINISTRIVIA
AND
ANNOUNCEMENTS

THE HALTING PROBLEM

GIVEN AN ARBITRARY COMPUTER
PROGRAM AND AN INPUT, DETERMINE
WHETHER THE PROGRAM WILL FINISH
RUNNING, OR CONTINUE TO RUN
FOREVER

4

TODAY’S ROADMAP

Decidability

The Halting Problem

Type I/Type II Errors

Soundness / Completeness

THE LIMITS OF COMPUTATION
6

DECIDABILITY

Computers! What can’t they do?!
• As we begin our exploration of security

evaluation, we care about this question for
two reasons:
• We need to know the capabilities of our

analysis target
• We need to know the capabilities of our

analysis engine

THEORETICAL LIMITS OF COMPUTATION
7

DECIDABILITY

Computability theory
• The study of what is computable
• Focused on abstractions for the sake

of generalizability
• Considers theoretical hardware,

for example

COMPUTATIONAL POWER
8

DECIDABILITY

What is a program?
• A set of executable instructions

COMPUTATIONAL POWER
9

DECIDABILITY

What is a program?
• A set of executable instructions

There are many formats for programs
• i.e. programming languages
• It would be nice to generalize what these

programs can compute (without getting
bogged down in syntax)

ABSTRACTING COMPUTATION
10

DECIDABILITY

Computability theory considers
classes of expressiveness
• Combinational logic
• Finite-state machines
• Pushdown automata
• Turing machines

ABSTRACTING COMPUTATION
11

DECIDABILITY

Computability theory considers
classes of expressiveness
• Combinational logic
• Finite-state machines
• Pushdown automata
• Turing machines

ABSTRACTING COMPUTATION
12

DECIDABILITY

Computability theory considers
classes of expressiveness
• Combinational logic
• Finite-state machines
• Pushdown automata
• Turing machines

ABSTRACTING COMPUTATION
13

DECIDABILITY

Computability theory considers
classes of expressiveness
• Combinational logic
• Finite-state machines
• Pushdown automata
• Turing machines

CHURCH-TURING THESIS
14

DECIDABILITY

Roughly: a function on the natural numbers can be calculated if and only if it is
computable by a Turing machine

Practical Upshot: Turing machines are powerful!

Turing

Machine

15

VIBE CHECK
DECIDABILITY

Does everyone remember why we are doing this?
• We want to determine the power of our analysis target
• We want to determine the power of our analysis engine
Good news! Both are bounded by Turing computability
• Next up: abstracting analysis itself

DECISION PROCEDURES
16

DECIDABILITY

A little vocabulary:

A decision problem is a computational question that can be solved with either a yes or a no. Frequently,
we consider decision problems as detection of a property in a program

A decision procedure is a method for solving a decision problem that always yields the correct answer

If there is no decision procedure for a given decision problem, that decision problem is called undecidable

PROGRAM ANALYSIS
AS DECISION PROCEDURE

17

DECIDABILITY

Since a program is just a list of
instructions, it is valid input to a
decision procedure

Analysis Engine

(property detector

program)

Analysis Target

(arbitrary program)

Yes

(property

present)

No

(property is

not present)

STRONG GUARANTEES
18

DECIDABILITY

A decision procedure is a high bar

Guarantee that:
• The analysis engine accepts every program
• The analysis engine always returns an answer
• The answer returned is always correct

Analysis Engine

(property detector

program)

Analysis Target

(arbitrary program)

Yes

(property

present)

No

(property is

not present)

Rice’s Theorem

TODAY’S ROADMAP

Decidability

The Halting Problem

Type I/Type II Errors

Soundness / Completeness

STATING THE PROBLEM
20

THE HALTING PROBLEM

Given a description of a Turing machine

and its initial input, determine whether the

program, when executed on this input, ever

halts (completes). The alternative is that it

runs forever without halting

A HALTING DETECTOR
21

THE HALTING PROBLEM

Given a description of a Turing machine

and its initial input, determine whether the

program, when executed on this input, ever

halts (completes). The alternative is that it

runs forever without halting

Is there a decision procedure for the

halting problem?
- We’ll sketch the proof outline that there is NOT

- Relies on a proof by contradiction

Halting Detector

Analysis Target

+ Input

(arbitrary program)

Yes

(target halts)

No

(target spins)

PROOF BY CONTRADICTION
22

THE HALTING PROBLEM

Reductio ad absurdum – Assuming the premise has obviously incorrect consequences

Here: assume there is a halting detector

Halting

Detector

Yes

(target

halts)

No

(target

spins)

halts(ANY ARBITRARY PROGRAM)

black_magic(){

 if (halts(black_magic){

 while(true){} //Spin

 }

 //Halt

}

Assumption
Black_magic

black_magic

halts

Black_magic

spins

spin halt

Black_magic

Halting

Detector

WHO CARES?
23

THE HALTING PROBLEM

No halting decision procedure means no reachability decision procedure

1. int main(){

2. if (my_function()){

3. int * a = nullptr;

4. *a = 1;

5. }

6. }

black_magic()

This program crashes if and only if it reaches line 4,

which depends on the result of a function call being

true

RICE’S THEOREM
24

THE HALTING PROBLEM

No halting decision procedure means no reachability decision procedure

1. int main(){

2. if (my_function()){

3. int * a = nullptr;

4. *a = 1;

5. }

6. }

black_magic()

This program crashes if and only if it reaches line 4,

which depends on the result of a function call being

true

Exhibits the behavior you care about

behavior you care about

RICE’S THEOREM
25

THE HALTING PROBLEM

“All non-trivial semantic properties of programs are undecidable”

LIMITATIONS OF RICE’S THEOREM
26

THE HALTING PROBLEM

Rice’s Theorem is less catastrophic than you might expect for security:

• A decision procedure is a pretty high bar

• A Turing machine is actually not a perfect approximation of the computers we use!

Despite these limitations, it is widely accepted that program analysis is always
approximate

• We can’t be right all of the time

• We can choose what types of errors we make

TODAY’S ROADMAP

Decidability

The Halting Problem

Categorizing Program Analyses

Soundness / Completeness

TYPES OF ANALYSIS

28

CATEGORIZING PROGRAM ANALYSES

In order to determine the properties of a given program analysis, let’s frame it as a
detector

Analysis Engine

(property detector

program)

Analysis Target

(arbitrary program)

Yes

(property

present)

No

(property is

not present)

Note: we can detect bad

behavior or good behavior

CLASSIFYING ERRORS

29

CATEGORIZING PROGRAM ANALYSES

Positive

Negative

True False

Has report

Has bug

No report
No bug

No bug

Has report

No report

Has bug

report

bug

No bug

report

Analysis is correct Analysis is wrong

Correct

Correct

Type I

Error

Type II

Error

Analysis Engine

(bug detector)

Analysis Target

(arbitrary program)

Yes

(buggy)

No

(property is

not present)

TODAY’S ROADMAP

Decidability

The Halting Problem

Categorizing Program Analyses

Soundness / Completeness

GUARANTEES OF IMPERFECT ANALYSES

31

SOUNDNESS / COMPLETENESS

Consistency / Reliability super important for users

We’d like to limit the kinds of errors we report

We can choose which type of bug report error to avoid

• Soundness: No false positives

• Completeness: No false negatives

VISUAL ANALOGY

32

SOUNDNESS / COMPLETENESS

Imagine the universe of all
programs is contained in a circle

• You can draw a circle around the
programs you report as buggy

• The actual buggy programs
occupy a jagged region

All Programs

Buggy programs

Reported
bugs

VISUAL ANALOGY

33

SOUNDNESS / COMPLETENESS

All Programs All Programs

Complete bug detection

Reported
bugs

All buggy programs get flagged
(No false negative problem)

Some correct programs get flagged
(has false positive problem)

False
Positive

Buggy programs Buggy programs

Reported
bugs

Sound bug detection

Some buggy programs pass through
(has false negative problem)

All correct programs pass through
(No false positive problem)

False
Negative

TRIVIAL SOUNDNESS

34

CATEGORIZING PROGRAM ANALYSES

All Programs

Buggy programs

Reported
bugs

Sound bug detection

Some buggy programs pass through
(has false negative problem)

All correct programs pass through
(No false positive problem)

False
Negative

Analysis Engine

(bug detector)

Analysis Target

(arbitrary program)

No

(property is

not present)

TRIVIAL COMPLETENESS

35

CATEGORIZING PROGRAM ANALYSES

Analysis Engine

(bug detector)

Analysis Target

(arbitrary program)

Yes

(buggy)

All Programs

Complete bug detection

Reported
bugs

All buggy programs get flagged
(No false negative problem)

Some correct programs get flagged
(has false positive problem)

False
Positive

Buggy programs

36

BEYOND ALL-OR-NOTHING
SOUNDNESS / COMPLETENESS

As you can imagine, soundness and completeness are not the full story
• Guarantees are nice, but we want legitimately useful analyses!
• Many practical analyses are neither sound nor complete

37

STATIC VS DYNAMIC ANALYSIS
SOUNDNESS / COMPLETENESS

One distinction in analysis is how
the analysis treats the target
• Static analysis – Operates

without running the program
• Dynamic analysis - Operates

with running the program

38

ANALYSIS METHOD VS ERRORS
SOUNDNESS / COMPLETENESS

It’s natural to consider the types of compromises of each
analysis method
• Static analysis

• Often builds a model of the program, makes
inferences on that model

• Tends to make completeness easier
• Scalability concerns for large programs

• Dynamic analysis
• Often performs the analysis by straight up running

the program, observing behavior
• Tends to make soundness easier
• Coverage problems

39

ABOUT COVERAGE
SOUNDNESS / COMPLETENESS

Line coverage

Path coverage

Branch coverage

int f(bool b) {

 Obj * o = null;

 int v = 2;

 if (b) {

 o = new Obj ();

 v = rand_int();

 }

 if (v == 2){

 o->setInvalid()

 }

 return o->property();

}

LECTURE END

Summary:

- Decidability

- Computational Theory

- Categorizing analysis

41

42

43

	Slide 1: ExerCise #2
	Slide 2: Computability
	Slide 3: Administrivia and Announcements
	Slide 4: The Halting PRoblem
	Slide 5: Today’s Roadmap
	Slide 6: The Limits of Computation
	Slide 7: Theoretical Limits OF Computation
	Slide 8: COMPUTATIONAL POWER
	Slide 9: COMPUTATIONAL POWER
	Slide 10: Abstracting Computation
	Slide 11: Abstracting Computation
	Slide 12: Abstracting Computation
	Slide 13: Abstracting Computation
	Slide 14: Church-Turing Thesis
	Slide 15: Vibe Check
	Slide 16: Decision PROCEDURES
	Slide 17: Program Analysis as Decision PROCEDURE
	Slide 18: Strong Guarantees
	Slide 19: Today’s Roadmap
	Slide 20: Stating The Problem
	Slide 21: A Halting Detector
	Slide 22: Proof By ConTradiction
	Slide 23: Who Cares?
	Slide 24: Rice’s Theorem
	Slide 25: Rice’s Theorem
	Slide 26: Limitations of Rice’S Theorem
	Slide 27: Today’s Roadmap
	Slide 28: Types of Analysis
	Slide 29: Classifying Errors
	Slide 30: Today’s Roadmap
	Slide 31: Guarantees of Imperfect Analyses
	Slide 32: Visual Analogy
	Slide 33: Visual Analogy
	Slide 34: Trivial Soundness
	Slide 35: Trivial Completeness
	Slide 36: Beyond All-or-Nothing
	Slide 37: Static vs Dynamic Analysis
	Slide 38: Analysis Method vs Errors
	Slide 39: About Coverage
	Slide 40: Lecture END
	Slide 41
	Slide 42
	Slide 43

