
EXERCISE #2
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OVERVIEW REVIEW

Write your name and answer the following on a piece of paper

• What is Rice’s Theorem? How does it interact with the halting problem?
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THE HALTING PROBLEM

GIVEN AN ARBITRARY COMPUTER 
PROGRAM AND AN INPUT, DETERMINE 
WHETHER THE PROGRAM WILL FINISH 
RUNNING, OR CONTINUE TO RUN 
FOREVER
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TODAY’S ROADMAP

Decidability

The Halting Problem

Type I/Type II Errors

Soundness / Completeness



THE LIMITS OF COMPUTATION
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DECIDABILITY

Computers! What can’t they do?!
• As we begin our exploration of security 

evaluation, we care about this question for 
two reasons:
• We need to know the capabilities of our 

analysis target 
• We need to know the capabilities of our 

analysis engine



THEORETICAL LIMITS OF COMPUTATION
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DECIDABILITY

Computability theory
• The study of what is computable
• Focused on abstractions for the sake 

of generalizability
• Considers theoretical hardware, 

for example



COMPUTATIONAL POWER
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DECIDABILITY

What is a program? 
• A set of executable instructions



COMPUTATIONAL POWER
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DECIDABILITY

What is a program? 
• A set of executable instructions

There are many formats for programs
• i.e. programming languages
• It would be nice to generalize what these 

programs can compute (without getting 
bogged down in syntax)



ABSTRACTING COMPUTATION
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DECIDABILITY

Computability theory considers 
classes of expressiveness
• Combinational logic
• Finite-state machines
• Pushdown automata
• Turing machines
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ABSTRACTING COMPUTATION
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DECIDABILITY

Computability theory considers 
classes of expressiveness
• Combinational logic
• Finite-state machines
• Pushdown automata
• Turing machines



CHURCH-TURING THESIS
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DECIDABILITY

Roughly: a function on the natural numbers can be calculated if and only if it is 
computable by a Turing machine

Practical Upshot: Turing machines are powerful!

Turing

Machine
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VIBE CHECK
DECIDABILITY

Does everyone remember why we are doing this?
• We want to determine the power of our analysis target
• We want to determine the power of our analysis engine
Good news! Both are bounded by Turing computability
• Next up: abstracting analysis itself



DECISION PROCEDURES
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DECIDABILITY

A little vocabulary: 

A decision problem is a computational question that can be solved with either a yes or a no. Frequently, 
we consider decision problems as detection of a property in a program

A decision procedure is a method for solving a decision problem that always yields the correct answer

If there is no decision procedure for a given decision problem, that decision problem is called undecidable



PROGRAM ANALYSIS 
AS DECISION PROCEDURE
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DECIDABILITY

Since a program is just a list of 
instructions, it is valid input to a 
decision procedure

Analysis Engine

(property detector 

program)

Analysis Target

(arbitrary program)

Yes

(property 

present)

No

(property is 

not present)



STRONG GUARANTEES
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DECIDABILITY

A decision procedure is a high bar

Guarantee that: 
• The analysis engine accepts every program
• The analysis engine always returns an answer
• The answer returned is always correct

Analysis Engine

(property detector 

program)

Analysis Target

(arbitrary program)

Yes

(property 

present)

No

(property is 

not present)

Rice’s Theorem
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STATING THE PROBLEM
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THE HALTING PROBLEM

Given a description of a Turing machine 

and its initial input, determine whether the 

program, when executed on this input, ever 

halts (completes). The alternative is that it 

runs forever without halting



A HALTING DETECTOR
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THE HALTING PROBLEM

Given a description of a Turing machine 

and its initial input, determine whether the 

program, when executed on this input, ever 

halts (completes). The alternative is that it 

runs forever without halting

Is there a decision procedure for the 

halting problem?
- We’ll sketch the proof outline that there is NOT

- Relies on a proof by contradiction

Halting Detector

Analysis Target

+ Input

(arbitrary program)

Yes

(target halts)

No

(target spins)



PROOF BY CONTRADICTION
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THE HALTING PROBLEM

Reductio ad absurdum – Assuming the premise has obviously incorrect consequences

Here: assume there is a halting detector

Halting 

Detector

Yes

(target 

halts)

No

(target 

spins)

halts(ANY ARBITRARY PROGRAM)

black_magic(){

   if (halts(black_magic){ 

     while(true){} //Spin

   }

   //Halt

}

Assumption
Black_magic

black_magic 

halts

Black_magic 

spins

spin halt

Black_magic

Halting 

Detector



WHO CARES?
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THE HALTING PROBLEM

No halting decision procedure means no reachability decision procedure

1. int main(){

2.    if (my_function()){

3.       int * a = nullptr;

4.       *a = 1;

5.    }

6. }

black_magic()

This program crashes if and only if it reaches line 4,

which depends on the result of a function call being

true



RICE’S THEOREM
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THE HALTING PROBLEM

No halting decision procedure means no reachability decision procedure

1. int main(){

2.    if (my_function()){

3.       int * a = nullptr;

4.       *a = 1;

5.    }

6. }

black_magic()

This program crashes if and only if it reaches line 4,

which depends on the result of a function call being

true

Exhibits the behavior you care about

behavior you care about



RICE’S THEOREM
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THE HALTING PROBLEM

“All non-trivial semantic properties of programs are undecidable”



LIMITATIONS OF RICE’S THEOREM
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THE HALTING PROBLEM

Rice’s Theorem is less catastrophic than you might expect for security:

• A decision procedure is a pretty high bar

• A Turing machine is actually not a perfect approximation of the computers we use!

Despite these limitations, it is widely accepted that program analysis is always 
approximate

• We can’t be right all of the time

• We can choose what types of errors we make
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TYPES OF ANALYSIS
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CATEGORIZING PROGRAM ANALYSES

In order to determine the properties of a given program analysis, let’s frame it as a 
detector

Analysis Engine

(property detector 

program)

Analysis Target

(arbitrary program)

Yes

(property 

present)

No

(property is 

not present)

Note: we can detect bad 

behavior or good behavior



CLASSIFYING ERRORS
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CATEGORIZING PROGRAM ANALYSES

Positive

Negative

True False

Has report

Has bug

No report
No bug

No bug

Has report

No report

Has bug

report

bug

No bug

report

Analysis is correct Analysis is wrong

Correct

Correct

Type I 

Error

Type II 

Error

Analysis Engine

(bug detector)

Analysis Target

(arbitrary program)

Yes

(buggy)

No

(property is 

not present)
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GUARANTEES OF IMPERFECT ANALYSES

31

SOUNDNESS / COMPLETENESS

Consistency / Reliability super important for users

We’d like to limit the kinds of errors we report

We can choose which type of bug report error to avoid

• Soundness: No false positives

• Completeness: No false negatives



VISUAL ANALOGY
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SOUNDNESS / COMPLETENESS

Imagine the universe of all 
programs is contained in a circle

• You can draw a circle around the 
programs you report as buggy

• The actual buggy programs 
occupy a jagged region

All Programs

Buggy programs

Reported
bugs



VISUAL ANALOGY
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SOUNDNESS / COMPLETENESS

All Programs All Programs

Complete bug detection

Reported
bugs

All buggy programs get flagged 
(No false negative problem)

Some correct programs get flagged 
(has false positive problem)

False
Positive

Buggy programs Buggy programs

Reported
bugs

Sound bug detection

Some buggy programs pass through
(has false negative problem)

All correct programs pass through
(No false positive problem)

False
Negative



TRIVIAL SOUNDNESS
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CATEGORIZING PROGRAM ANALYSES

All Programs

Buggy programs

Reported
bugs

Sound bug detection

Some buggy programs pass through
(has false negative problem)

All correct programs pass through
(No false positive problem)

False
Negative

Analysis Engine

(bug detector)

Analysis Target

(arbitrary program)

No

(property is 

not present)



TRIVIAL COMPLETENESS
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CATEGORIZING PROGRAM ANALYSES

Analysis Engine

(bug detector)

Analysis Target

(arbitrary program)

Yes

(buggy)

All Programs

Complete bug detection

Reported
bugs

All buggy programs get flagged 
(No false negative problem)

Some correct programs get flagged 
(has false positive problem)

False
Positive

Buggy programs
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BEYOND ALL-OR-NOTHING 
SOUNDNESS / COMPLETENESS

As you can imagine, soundness and completeness are not the full story
• Guarantees are nice, but we want legitimately useful analyses!
• Many practical analyses are neither sound nor complete
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STATIC VS DYNAMIC ANALYSIS 
SOUNDNESS / COMPLETENESS

One distinction in analysis is how 
the analysis treats the target
• Static analysis – Operates 

without running the program
• Dynamic analysis  - Operates 

with running the program



38

ANALYSIS METHOD VS ERRORS
SOUNDNESS / COMPLETENESS

It’s natural to consider the types of compromises of each 
analysis method
• Static analysis 

• Often builds a model of the program, makes 
inferences on that model

• Tends to make completeness easier
• Scalability concerns for large programs

• Dynamic analysis
• Often performs the analysis by straight up running 

the program, observing behavior
• Tends to make soundness easier
• Coverage problems
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ABOUT COVERAGE
SOUNDNESS / COMPLETENESS

Line coverage

Path coverage

Branch coverage

int f(bool b) {

    Obj * o = null;

    int v = 2;

    if (b) {

        o = new Obj ();

        v = rand_int(); 

    }

    if (v == 2){

        o->setInvalid()

    }

    return o->property(); 

}



LECTURE END

Summary:

- Decidability

- Computational Theory

- Categorizing analysis
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