
EXERCISE #30

1

SYMBOLIC EXECUTION REVIEW

Write your name and answer the following on a piece of paper

Draw out the complete symbolic execution tree for the following program. Nodes

should be annotated with the path constraint and line number

01. int main(){

02. int c = getchar();

03. if (c > 2){

04. if (c < 5){

05. return 7;

06. } else {

07. return 0 / 1;

08. }

09. }

10. return 3;

11. }

ADMINISTRIVIA
AND
ANNOUNCEMENTS

CONCOLIC EXECUTION
EECS 677: Software Security Evaluation

Drew Davidson

WHERE WE’RE AT

DYNAMIC ANALYSIS

4

- generating test cases

5

PREVIOUSLY: SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

ADVANCE ABSTRACT STATES ACROSS THE
PROGRAM

Split abstract states according to predicates to

enhance coverage

Symbolic Execution =/= Burning in Effigy

Use an SMT Solver to determine if the path constraint

is feasible

SOUND AND COMPLETE MODULO TERMINATION

Stealth caveat of testing as dynamic analysis as well

6

THIS TIME: ENHANCING SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

FROM STATE TREES TO TEST CASES

7

GENERATING TEST CASES
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED TO BE
BUILDING A TEST SUITE! … instead, we generated a symbolic execution tree

8

GENERATING TEST CASES
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED
TO BE BUILDING A TEST SUITE!

… instead, we generated a symbolic

execution tree

01. int main(){

02. int a = getchar();

03. int b = getchar();

04. if (a > 5){

05. return 1;

06. } else {

07. return 2;

08. }

09. if (b > 3){

10. return 3;

11. } else {

12. return 4;

13. }

14. }

9

GENERATING TEST CASES
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED
TO BE BUILDING A TEST SUITE!

… instead, we generated a symbolic

execution tree

01. int main(){

02. int a = getchar();

03. int b = getchar();

04. if (a > 5){

05. return 1;

06. } else {

07. return 2;

08. }

09. if (b > 3){

10. return 3;

11. } else {

12. return 4;

13. }

14. }

10

FROM TREE TO TESTS
CONCOLIC EXECUTION

EACH STATE’S PATH CONSTRAINT
SYMBOLIZES A SET OF TEST CASES

ASK THE SMT SOLVER FOR A
SATISFYING ASSIGNMENT

01. int main(){

02. int a = getchar();

03. int b = getchar();

04. if (a > 5){

05. return 1;

06. } else {

07. return 2;

08. }

09. if (b > 3){

10. return 3;

11. } else {

12. return 4;

13. }

14. }

11

TERMINATION
OUTLINE / OVERVIEW

ONE ADVANTAGE OF SYMBOLIC EXECUTION:
Partial credit

WE CAN GUARANTEE TERMINATION AT THE
EXPENSE OF COMPLETENESS

Quit after a certain threshold is met

- Size of the execution tree

- Wall clock time

12

STATE PRUNING
SYMBOLIC EXECUTION

TERMINATION INSIGHT: A REDUNDANT STATE HAS
REDUNDANT SUCCESSORS
* With proper environmental handling

01. int main(){

02. while (true) {

03. int b = getchar();

04. if (b > 5){

05. return 1;

06. }

07. }

08. }

13

RESEARCH DIRECTION: “FIE ON FIRMWARE”
FUZZING

SYMBOLIC EXECUTION FOR “EXOTIC” ENVIRONMENTS

14

STATE PRUNING: LIMITATION
OUTLINE / OVERVIEW

SERIOUS PROGRAMS LIKELY HAVE STATE SPACE EXPLOSION

States are too complicated to prune.

15

STATE PRUNING: ALTERNATIVES
OUTLINE / OVERVIEW

STATE PRIORITIZATION

Akin to the fuzzing heuristics

16

STATE PRUNING: ALTERNATIVES
OUTLINE / OVERVIEW

CONCRETIZATION

17

CONCOLIC EXECUTION
OUTLINE / OVERVIEW

18

CONCOLIC EXECUTION
OUTLINE / OVERVIEW

BENEFITS

Increased coverage (at the cost of completeness)

Can still pair with termination thresholds

Much easier to deal with model boundaries

WRAP-UP

SYMBOLIC EXECUTION

19

A simple, elegant idea

20

RECALL: TEST CASE GENERATION
SYMBOLIC EXECUTION

21

THE PROBLEM OF COVERAGE
SYMBOLIC EXECUTION

22

PREDICATES GET IN THE WAY!
SYMBOLIC EXECUTION

23

ELIMINATING INFEASIBLE PATHS
SYMBOLIC EXECUTION

24

THE MAGIC OF THE SOLVER
SYMBOLIC EXECUTION

25

THE SYMBOLIC EXECUTION TREE
SYMBOLIC EXECUTION

26

SOUNDNESS / COMPLETENESS
SYMBOLIC EXECUTION

	Slide 1: Exercise #30
	Slide 2: Administrivia and Announcements
	Slide 3: Concolic Execution
	Slide 4: Where We’re At
	Slide 5: Previously: Symbolic Execution
	Slide 6: This Time: Enhancing Symbolic Execution
	Slide 7: Generating Test Cases
	Slide 8: Generating Test Cases
	Slide 9: Generating Test Cases
	Slide 10: From tree to tests
	Slide 11: Termination
	Slide 12: State Pruning
	Slide 13: Research Direction: “Fie on Firmware”
	Slide 14: State Pruning: Limitation
	Slide 15: State Pruning: Alternatives
	Slide 16: State Pruning: Alternatives
	Slide 17: Concolic Execution
	Slide 18: Concolic Execution
	Slide 19: Wrap-up
	Slide 20: Recall: Test case generation
	Slide 21: The problem of coverage
	Slide 22: Predicates get in the way!
	Slide 23: Eliminating Infeasible Paths
	Slide 24: The magic of the solver
	Slide 25: The symbolic execution Tree
	Slide 26: Soundness / Completeness

