
EXERCISE #30
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SYMBOLIC EXECUTION REVIEW

Write your name and answer the following on a piece of paper

Draw out the complete symbolic execution tree for the following program. Nodes 

should be annotated with the path constraint and line number

01. int main(){

02.  int c = getchar();

03.  if (c > 2){

04.    if (c < 5){

05.      return 7;

06.    } else {

07.       return 0 / 1;

08.    }

09.   }

10.  return 3;

11. }
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WHERE WE’RE AT

DYNAMIC ANALYSIS
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- generating test cases
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PREVIOUSLY: SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

ADVANCE ABSTRACT STATES ACROSS THE 
PROGRAM

Split abstract states according to predicates to 

enhance coverage

Symbolic Execution =/= Burning in Effigy

Use an SMT Solver to determine if the path constraint 

is feasible

SOUND AND COMPLETE MODULO TERMINATION

Stealth caveat of testing as dynamic analysis as well
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THIS TIME: ENHANCING SYMBOLIC EXECUTION
OUTLINE / OVERVIEW

FROM STATE TREES TO TEST CASES
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GENERATING TEST CASES
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED TO BE 
BUILDING A TEST SUITE! … instead, we generated a symbolic execution tree
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GENERATING TEST CASES
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED 
TO BE BUILDING A TEST SUITE!

… instead, we generated a symbolic 

execution tree

01. int main(){

02.   int a = getchar();

03.   int b = getchar();

04.   if (a > 5){

05.     return 1;

06.   } else {

07.     return 2;

08.   }

09.   if (b > 3){

10.    return 3;

11.   } else {

12.    return 4;

13.   }

14. }
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GENERATING TEST CASES
CONCOLIC EXECUTION

WAIT A MINUTE… WE’RE SUPPOSED 
TO BE BUILDING A TEST SUITE!

… instead, we generated a symbolic 

execution tree

01. int main(){

02.   int a = getchar();

03.   int b = getchar();

04.   if (a > 5){

05.     return 1;

06.   } else {

07.     return 2;

08.   }

09.   if (b > 3){

10.    return 3;

11.   } else {

12.    return 4;

13.   }

14. }
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FROM TREE TO TESTS
CONCOLIC EXECUTION

EACH STATE’S PATH CONSTRAINT 
SYMBOLIZES A SET OF TEST CASES

ASK THE SMT SOLVER FOR A 
SATISFYING ASSIGNMENT

01. int main(){

02.   int a = getchar();

03.   int b = getchar();

04.   if (a > 5){

05.     return 1;

06.   } else {

07.     return 2;

08.   }

09.   if (b > 3){

10.    return 3;

11.   } else {

12.    return 4;

13.   }

14. }
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TERMINATION
OUTLINE / OVERVIEW

ONE ADVANTAGE OF SYMBOLIC EXECUTION:
Partial credit

WE CAN GUARANTEE TERMINATION AT THE 
EXPENSE OF COMPLETENESS

Quit after a certain threshold is met

- Size of the execution tree

- Wall clock time
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STATE PRUNING
SYMBOLIC EXECUTION

TERMINATION INSIGHT: A REDUNDANT STATE HAS 
REDUNDANT SUCCESSORS 
* With proper environmental handling

01. int main(){

02.   while (true) { 

03.     int b = getchar();

04.     if (b > 5){

05.       return 1;

06.     }

07.   }

08. }
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RESEARCH DIRECTION: “FIE ON FIRMWARE”
FUZZING

SYMBOLIC EXECUTION FOR “EXOTIC” ENVIRONMENTS 
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STATE PRUNING: LIMITATION
OUTLINE / OVERVIEW

SERIOUS PROGRAMS LIKELY HAVE STATE SPACE EXPLOSION

States are too complicated to prune.
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STATE PRUNING: ALTERNATIVES
OUTLINE / OVERVIEW

STATE PRIORITIZATION

Akin to the fuzzing heuristics
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STATE PRUNING: ALTERNATIVES
OUTLINE / OVERVIEW

CONCRETIZATION
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CONCOLIC EXECUTION
OUTLINE / OVERVIEW
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CONCOLIC EXECUTION
OUTLINE / OVERVIEW

BENEFITS

Increased coverage (at the cost of completeness)

Can still pair with termination thresholds

Much easier to deal with model boundaries



WRAP-UP

SYMBOLIC EXECUTION
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A simple, elegant idea
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RECALL: TEST CASE GENERATION
SYMBOLIC EXECUTION
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THE PROBLEM OF COVERAGE
SYMBOLIC EXECUTION
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PREDICATES GET IN THE WAY!
SYMBOLIC EXECUTION
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ELIMINATING INFEASIBLE PATHS
SYMBOLIC EXECUTION
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THE MAGIC OF THE SOLVER
SYMBOLIC EXECUTION



25

THE SYMBOLIC EXECUTION TREE
SYMBOLIC EXECUTION
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SOUNDNESS / COMPLETENESS
SYMBOLIC EXECUTION
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