
EXERCISE #5

1

STATIC ANALYSIS REVIEW

Write your name and answer the following on a piece of paper

• Show the instruction flowchart of the following function

void v(int a){

 if (a < 2){

 while (c < 3){

 c++;

 }

 if (b > 3){

 c = 12;

 }

 }

 return;

}

ADMINISTRIVIA
AND
ANNOUNCEMENTS

CONTROL FLOW GRAPHS
EECS 677: Software Security Evaluation

Drew Davidson

CLASS PROGRESS

OVERVIEWED TWO ANALYSIS
APPROACHES:

- DYNAMIC ANALYSIS: ANALYSIS THAT
USES A RUN OF THE PROGRAM

- STATIC ANALYSIS: ANALYSIS WITHOUT
RUNNING THE PROGRAM

4

CONTINUE TO EXPLORE STATIC ANALYSIS

5

CLASS PROGRESS

LOOK INTO CONCRETE FORMS OF STATIC
ANALYSIS

- Particularly interested in dataflow analysis

for now

- Building up the underlying abstractions /

techniques to perform such analysis

OPPORTUNITIES OF STATIC ANALYSIS
6

CLASS PROGRESS

FINITE ABSTRACTIONS OF UNBOUNDED
STATE SPACE

- Unnecessary to supply a given program

input

- Summarize the behavior of the program

under ANY input

LAST TIME: STATIC ANALYSIS
7

REVIEW: STATIC ANALYSIS

MENTIONED SOME STATIC ANALYSIS TECHNIQUES

- Syntactic Analysis

- Dataflow Analysis

- Model Checking

STARTED BUILDING A FUNDAMENTAL UNIT OF
STATIC ANALYSIS: THE BASIC BLOCK

- Sequence of code that executes… sequentially

8

BASIC BLOCKS BOUNDARIES
REVIEW: STATIC ANALYSIS

TWO DISTINGUISHED INSTRUCTIONS IN A BLOCK (MAY BE THE
SAME INSTRUCTION)

• Leader: An instruction that begins the block

• Terminator: An instruction that ends the block

9

BASIC BLOCKS BOUNDARIES
REVIEW: STATIC ANALYSIS

TWO DISTINGUISHED INSTRUCTIONS IN A BLOCK
(MAY BE THE SAME INSTRUCTION)

• Leader: An instruction that begins the block

• Terminator: An instruction that ends the block

A jump (ifz, goto)

The first instruction in the procedure

The target of a jump

The last instruction of the procedure

A call (We’ll use a special LINK edge)

The instruction after an terminator

BASIC BLOCKS EXAMPLE
10

STATIC ANALYSIS: CONTROL FLOW GRAPHS

y = 0;

if (g) {

 x = 1;

 x = 2;

} else {

 x = 3;

 if (g2) {

 x = y;

 }

 x = 4;

}

z = x;

BENEFITS OF BASIC BLOCKS
11

STATIC ANALYSIS: CONTROL FLOW GRAPHS

If-stmtLoops

(head)

(True

branch)

(after)

F

T

If-else

(head)

(True

branch)

(after)

(False

branch)

F

T

AN ADDITIONAL ABSTRACTION LAYER

• Leader: An instruction that begins the block

(head)

(body)

(after)

F
T

CFGS: A PER-FUNCTION ABSTRACTION
12

STATIC ANALYSIS: CONTROL FLOW GRAPHS

BY DEFINITION, A CFG NEVER INCLUDES MULTIPLE FUNCTIONS

Call instruction simply has a special “link” edge to its successor

CFG-Like analysis is possible on multiple functions, but requires special care to

avoid infeasible paths

LECTURE OUTLINE

• (Local) Dataflow analysis

• Global dataflow analysis

DATAFLOW ANALYSIS: BIG IDEA
14

DATAFLOW ANALYSIS

VIEW EACH STATEMENT AS A DATA TRANSFER FUNCTION

- Transform a program state into a new (updated) program state

- Simple idea: concrete program state into a new concrete program state

Stmt1: x = y ;

y has the value 1

x has the value 1

y has the value 1

state M

state M’

COMPOSING TRANSFER FUNCTIONS
15

DATAFLOW ANALYSIS

STATEMENTS COMPOSE NATURALLY WITH EACH OTHER*

Stmt1: x = y ;

y has the value 1

x has the value 1

y has the value 1

z has the value 1

state M

state M’

Stmt2: z = x ; For now, we’ll only think about

analysis within a BBL

AN EARLY WIN
16

DATAFLOW ANALYSIS

EVEN WITH THIS VERY SIMPLE CONCEPT, MIGHT BE ABLE
TO DETECT SOME ISSUES

Stmt1: x = y ;

y has the value 1

state M

Stmt2: z = 0 ;

Stmt3: p = 1 / z ;

FORMALIZING TRANSFER FUNCTIONS
17

DATAFLOW ANALYSIS

IF WE WANT TO BUILD AN AUTOMATED
(LOCAL) DATAFLOW ANALYSIS, WE NEED
PROGRAMMATIC PRECISION

Stmt1: k += 1 ;

Memory state M

Memory state M’

- Some sort of specification of what a statement does

- A statement is a memory state transformer

Need a semantics!

Representation mapping (large)

set of memory states to each other

Depend somewhat on the analysis

- Keep states manageable

- Handle the uncertainty inherent in

static analysis

Goals:

MEMORY AS VALUE SETS
18

DATAFLOW ANALYSIS

LET EACH MEMORY LOCATION CORRESPOND TO
A SET OF VALUES IT MIGHT CONTAIN

Stmt1: k += 1 ;

Memory state M

Memory state M’

- Define (informally) transfer functions as mapping

elements of M to elements of M’

𝑘: {1}

𝑘: {2}

𝑘: {3,4}

𝑘: {4,5}

COMPOSING VALUE SETS
19

DATAFLOW ANALYSIS

Stmt1: x = y ;

Stmt2: z = 0 ;

Stmt3: p = 1 / z ;

MODELLING UNCERTAINTY
20

DATAFLOW ANALYSIS

WE CAN NOW HANDLE OPAQUE DATA SOMEWHAT CLEANLY

Stmt1: x = y ;

Stmt2: z = USER_INPUT ;

Stmt3: p = 1 / z ;

Stmt1: x = y ;

Stmt2: z = global ;

Stmt3: p = 1 / z ;

LECTURE OUTLINE

• (Local) Dataflow analysis

• Global dataflow analysis

COMPOSING BLOCKS
22

DATAFLOW: TRANSFER FUNCTIONS

VALUE-SET MODEL OF MEMORY IMPLIES AN EASY WAY TO
EXTEND BEYOND LOCAL ANALYSIS

01. int x = 2;

02. if (g){

03. x = x - 1;

04. if (g2){

05. x = x – 1;

06. }

07. }

08. return 1 / x;

COMPOSING BLOCKS
23

GLOBAL DATAFLOW ANALYSIS

VALUE-SET MODEL OF MEMORY IMPLIES AN EASY WAY TO
EXTEND BEYOND LOCAL ANALYSIS

01. int x = 2;

02. if (g){

03. x = x - 1;

04. if (g2){

05. x = x – 1;

06. }

07. }

08. return 1 / x;

CHAOTIC ITERATION
24

GLOBAL DATAFLOW ANALYSIS

IN WHAT ORDER DO WE PROCESS BLOCKS?

01. int x = 2;

02. if (g){

03. x = x - 1;

04. if (g2){

05. x = x – 1;

06. }

07. }

08. return 1 / x;

01. int x = 2;

02. if (g){

03. x = x – 1;

04. if (g2){

05. x = x -1;

06. }

07. }

08. return 1 / x;

TROUBLE ON THE HORIZON
25

GLOBAL DATAFLOW ANALYSIS

Loops

LOOPS ARE TOUGH TO HANDLE!
26

GLOBAL DATAFLOW ANALYSIS

ISSUES WITH LOOPS

- Generate lots of paths

- Cyclic data dependency

Oh, brother! You may have some loops

LECTURE END!

• Local Dataflow analysis

• Global Dataflow analysis

	Slide 1: ExerCise #5
	Slide 2: Administrivia and Announcements
	Slide 3: Control Flow Graphs
	Slide 4: Class Progress
	Slide 5: Continue to Explore Static Analysis
	Slide 6: Opportunities of Static Analysis
	Slide 7: Last Time: Static Analysis
	Slide 8: Basic Blocks Boundaries
	Slide 9: Basic Blocks Boundaries
	Slide 10: Basic Blocks Example
	Slide 11: Benefits of Basic Blocks
	Slide 12: CFGs: A Per-Function Abstraction
	Slide 13: Lecture Outline
	Slide 14: DataFlow Analysis: Big Idea
	Slide 15: Composing Transfer Functions
	Slide 16: An Early Win
	Slide 17: Formalizing Transfer Functions
	Slide 18: Memory As Value SEts
	Slide 19: Composing Value SEts
	Slide 20: Modelling Uncertainty
	Slide 21: Lecture Outline
	Slide 22: Composing Blocks
	Slide 23: Composing Blocks
	Slide 24: Chaotic Iteration
	Slide 25: Trouble on the Horizon
	Slide 26: Loops Are Tough to Handle!
	Slide 27: Lecture END!

