
EXERCISE #3

1

COMPUTABILITY REVIEW

Write your name and answer the following on a piece of paper

• Briefly describe how you might create a sound analysis that detects null pointer

errors. Your analysis should be non-trivial (i.e. it should detect at least SOME true

positives)

ANALYSIS CATEGORIES
EECS 677: Software Security Evaluation

Drew Davidson

ADMINISTRIVIA
AND
ANNOUNCEMENTS

CLASS PROGRESS

TO EXPLORE SECURITY ANALYSIS, WE’RE
GETTING A GROUNDING IN PROGRAM
ANALYSIS

MANY (ALL?) PROGRAM MISBEHAVIORS
HAVE SECURITY IMPLICATIONS

4

LAST TIME: COMPUTABILITY
5

REVIEW: COMPUTABILITY

Theoretical Limit of Analysis: Rice’s Theorem
• Analysis cannot be perfect
• We can bound the type of imperfection:

• Soundness (no Type I errors)
• Completeness (no Type II errors)

provably
im

LECTURE OUTLINE

• Consequences of Rice’s

Theorem

• Categorizing Analyses

• Dynamic

• Static

BUILDING AN ANALYSIS
7

CONSEQUENCES OF RICE’S THEOREM

Analysis doesn’t demand perfection
• Fertile grounds for exploring different techniques

PRACTICAL ANALYSIS CONSIDERATIONS
8

CONSEQUENCES OF RICE’S THEOREM

We’ll explore some of the ways an
analysis may be structured
• Also spare a thought for assessing the quality and

appropriateness of an analysis

GUARANTEES WITH CAVEATS
9

CONSEQUENCES OF RICE’S THEOREM

Soundness/completeness aren’t the whole
story on analysis quality
• They are still super nice to have!
• Often useful to have a guarantee under some

assumption

PARTIAL CORRECTNESS
10

CONSEQUENCES OF RICE’S THEOREM

Definition: An algorithm is partially correct if
it only returns correct answers
• Definition allows for sometimes not returning an

answer!

LECTURE OUTLINE

• Consequences of Rice’s

Theorem

• Categorizing Analyses

• Dynamic

• Static

12

STATIC VS DYNAMIC ANALYSIS
CATEGORIZING ANALYSES

One distinction in analysis is how
the analysis treats the target
• Static analysis – Operates

without running the program
• Dynamic analysis - Operates

with running the program

13

ANALYSIS METHOD VS ERRORS
CATEGORIZING ANALYSES

It’s natural to consider the types of compromises of each
analysis method
• Static analysis

• Often builds a model of the program, makes
inferences on that model

• Tends to make completeness easier
• Scalability concerns for large programs

• Dynamic analysis
• Often performs the analysis by straight up running

the program, observing behavior
• Tends to make soundness easier
• Coverage problems

14

SOME FORMS OF DYNAMIC ANALYSIS
CATEGORIZING ANALYSES

Testing

Symbolic Execution

Fuzzing

15

TESTING
CATEGORIZING ANALYSIS

What happens when we do <this>?

16

TESTING
CATEGORIZING ANALYSIS

What happens when we do <this>?

17

CLASSIC LIMITATIONS OF TESTING
CATEGORIZING ANALYSIS

It’s hard to predict what might go wrong (presumably you’d have fixed it in this first place)

18

“FIXING” TESTING
CATEGORIZING ANALYSIS

It’s hard to predict what might go

wrong (presumably you’d have fixed

it in this first place)

• Could try to make a more

intentional correspondence (TDD)

• Could try to leverage tools

(Fuzzing)

19

TEST-DRIVEN DEVELOPMENT
CATEGORIZING ANALYSIS

1. Write a test case (expecting it to fail)

2. Implement enough functionality to pass the test case

3. Fix up the program

(repeat)

20

FUZZING
CATEGORIZING ANALYSIS

Automatically creating test cases

21

HOW GOOD IS A DYNAMIC ANALYSIS?
CATEGORIZING ANALYSIS

At least in theory, an analysis can be

measured in terms of how much of

the state space is explored

• Since the dynamic analysis is

executing one configuration at a

time, we know how many states

we’re exploring

• What is much harder to determine

is the total number of distinct

configurations

State space: the collection of

all possible configurations

of a program

22

COVERAGE METRICS
CATEGORIZING ANALYSIS

Line coverage

Path coverage

Branch coverage

int f(bool b) {

 Obj * o = null;

 int v = 2;

 if (b) {

 o = new Obj ();

 v = rand_int();

 }

 if (v == 2){

 o->setInvalid()

 }

 return o->property();

}

LECTURE OUTLINE

• Consequences of Rice’s

Theorem

• Categorizing Analyses

• Dynamic

• Static

24

SOME FORMS OF STATIC ANALYSIS
CATEGORIZING ANALYSES

Syntax Analysis

Abstract Interpretation

Dataflow Analysis

SYNTAX ANALYSIS
25

CATEGORIZING ANALYSES

Some troubling behavior of a program may be
discoverable via simply observing syntactic
structure

26

ANALYSIS SPECIFICITY
CATEGORIZING ANALYSIS

Flow Sensitive
int f(bool b) {

 Obj * o = null;

 int v = 2;

 if (b) {

 o = new Obj ();

 v = rand_int();

 }

 if (v == 2){

 o->setInvalid()

 }

 return o->property();

}

27

ANALYSIS SPECIFICITY
CATEGORIZING ANALYSIS

Path Sensitive
int f(bool b) {

 Obj * o = null;

 int v = 2;

 if (b) {

 o = new Obj ();

 v = rand_int();

 }

 if (v == 2){

 o->setInvalid()

 }

 return o->property();

}

ABSTRACT INTERPRETATION
28

CATEGORIZING ANALYSES

(Over)approximate the state of the program
(Over)approximate the domain of values

ABSTRACT INTERPRETATION
29

CATEGORIZING ANALYSES

(Over)approximate the state of the program
(Over)approximate the domain of values

Anything that isn’t crystal clear to a static analysis tool probably
isn’t clear to your fellow programmers, either. The classic
hacker disdain for “bondage and discipline languages” is short-
sighted – the needs of large, long-lived, multi-programmer
projects are just different than the quick work you do for
yourself

- John Carmack

OVERVIEW DONE!
30

CATEGORIZING ANALYSES

We’ll cover many of these techniques (and more!)

Next up:
- Looking at the kinds of program flaws that can cause

problems
- Start looking at toolsets to build our analyses

LECTURE END!

• Consequences of Rice’s

Theorem

• Categorizing Analyses

• Dynamic

• Static

32

33

Anything that isn’t crystal clear to a static analysis tool probably
isn’t clear to your fellow programmers, either. The classic
hacker disdain for “bondage and discipline languages” is short-
sighted – the needs of large, long-lived, multi-programmer
projects are just different than the quick work you do for
yourself.John Carmack's Static Code Analysis post

https://web.archive.org/web/20140713032309/http:/www.altdev.co/2011/12/24/static-code-analysis/

	Slide 1: ExerCise #3
	Slide 2: Analysis Categories
	Slide 3: Administrivia and Announcements
	Slide 4: Class Progress
	Slide 5: Last Time: Computability
	Slide 6: Lecture Outline
	Slide 7: Building an Analysis
	Slide 8: Practical Analysis Considerations
	Slide 9: Guarantees With Caveats
	Slide 10: Partial Correctness
	Slide 11: Lecture OUtline
	Slide 12: Static vs Dynamic Analysis
	Slide 13: Analysis Method vs Errors
	Slide 14: Some Forms of Dynamic Analysis
	Slide 15: Testing
	Slide 16: Testing
	Slide 17: Classic Limitations of Testing
	Slide 18: “FiXing” Testing
	Slide 19: Test-Driven Development
	Slide 20: Fuzzing
	Slide 21: How Good IS A Dynamic Analysis?
	Slide 22: Coverage Metrics
	Slide 23: Lecture Outline
	Slide 24: Some Forms of STATIC Analysis
	Slide 25: Syntax Analysis
	Slide 26: Analysis SPecificity
	Slide 27: Analysis SPecificity
	Slide 28: Abstract Interpretation
	Slide 29: Abstract Interpretation
	Slide 30: Overview Done!
	Slide 31: Lecture END!
	Slide 32
	Slide 33

