
EXERCISE #28

1

LLVM INSTRUMENTATION REVIEW

Write your name and answer the following on a piece of paper

Describe the difference between the profile-instr-generate and profile-generate options

for LLVM instrumentation?

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Free exercises from last week

FUZZING
EECS 677: Software Security Evaluation

Drew Davidson

WHERE WE’RE AT

DYNAMIC INSTRUMENTATION

4

Use the execution of a program to find

(security) bugs

Necessarily dependent on encountered

execution behavior

5

PREVIOUSLY: LLVM INSTRUMENTATION
REVIEW: LAST LECTURE

Described commands to use PGO for line

coverage analysis

SETUP FOR A CUSTOM LLVM
ANALYSIS

USAGE OF LLVM BUILT-IN
INSTRUMENTATION ANALYSIS

Described the basic infrastructure necessary to

craft a custom instrumentation

6

THIS LESSON: FUZZING
OUTLINE / OVERVIEW

GENERATING GOOD TEST CASES

Cases that exercise unexpected behavior

Cases that increase coverage of program behaviors

PREVIOUS STABS AT THIS TOPIC

The random “fuzz” of white noise

Consider testing as an intrinsic part of the SSDLC

methodology

Test-driven development

Post-hoc evaluation via coverage metrics

TODAY: JUST GUESS

7

HISTORY OF FUZZING
OUTLINE / OVERVIEW

1988: IT WAS A DARK AND STORMY NIGHT

Professor Bart Miller attempts to work from home…

Telnet

Connection

noise

Nonsense

Commands

Program

Crash!Well-formed

Commands

8

BREAKING CIRCULAR LOGIC
OUTLINE / OVERVIEW

AUTOMATED TEST CASE GENERATION RESOLVES A
FUNDAMENTAL CONFLICT IN TESTING…

Tautologically impossible to predict unpredictable

behavior

Apply a technique that obviated the need for

expectations

9

GRACEFUL FAILURE
OUTLINE / OVERVIEW

Any error should be anticipated and handled by the

system, with an informative error message should

recovery become impossible

A KEY PRINCIPLE IN THE VALIDITY OF FUZZING

“The user should never see a seg fault”

10

THE SIMPLEST FUZZER
FUZZ TESTING

THE MOST BASIC FORM OF FUZZING

cat /dev/random | program

A study in the 90s basically did this, finding bugs in…

adb, as, bc, cb, col, diction, emacs, eqn, ftp, indent, lex,

look, m4, make, nroff, plot, prolog, ptx, refer!, spell, style,

tsort, uniq, vgrind, vi

11

EXPLORING UNEXPECTED BEHAVIOR
FUZZING

RANDOM INPUT IS SURPRISINGLY EFFECTIVE

Numerous bugs found in practice via fuzzing…

Busybox utilities

Windows bugs

Linux Kernel bugs

BENEFITS OF FUZZING

Very easy to run

Instant results

Highly scalable

12

PRIORITIZING INPUT
FUZZING

THE CHALLENGE OF FUZZERS IS (USUALLY) GETTING PAST THE FIRST VALIDATION
CHECK

if (!sane_input()){

 exit 1;

}

//The rest of the program

13

SIMPLE TESTING STRATEGY
FUZZING

CONSIDER “INTERESTING” INPUT

Values close to the maximum, minimum, middle, etc

CASE STUDY: CARD READER INPUT: [FRISBY ET AL., 2012]

14

MUTATION-BASED FUZZERS
FUZZING

EXPLORE DEVIATIONS FROM KNOWN INPUT

Example mutations:

Binary input

– Bit flips

- Byte flips

- Change random bytes

- Insert random byte chunks

- Delete random byte chunks

- Set randomly chosen byte chunks to interesting

values e.g. INT_MAX, INT_MIN, 0, 1, -1, … §

Text input

- Insert random symbols or keywords from a dictionary

15

REPRESENTATIVE TOOL: AFL
FUZZING

AFL (AMERICAN FUZZY LOP)

Maintained by Google

STATE OF THE ART

Generally considered the best, state-of-the-art fuzzer

16

REPRESENTATIVE TOOL: AFL
OUTLINE / OVERVIEW

EXAMPLE COMMAND

“TRADITIONAL FUZZING”

mkdir in_dir

echo “hello” > in_dir/hello

afl-fuzz -n -i in_dir -o out_dir cat

17

REPRESENTATIVE TOOL: AFL
FUZZING

INSTRUMENTATION MODE

1) Compile the program with

coverage probes

2) Attempt to prioritize / mutate

test cases that extend

coverage

afl-clang++ <build command>

18

FUZZING ORACLES
FUZZING

BEYOND GRACEFUL FAILURE

In C/C++ there are a lot of violations of proper behavior that are invisible

“Seems fine until it’s a huge problem”

SANITIZERS

UBSan – Undefined behavior sanitizer

ASan – Address sanitizer

TSan – Thread sanitizer

19

RESEARCH DIRECTION: “GUNKING”
FUZZING

FUZZING AS ADVERSARIAL RECON

Fuzzing is so good at finding bugs that even the bad guys do it

PERHAPS A PROGRAM SHOULD DEPLOY ANTI-FUZZING TECH

What would that look like?

WRAP-UP

INTRODUCED THE CONCEPT AND THE
“INDUSTRY STANDARD” TOOL OF FUZZING

20

A simple, elegant idea

	Slide 1: Exercise #28
	Slide 2: Administrivia and Announcements
	Slide 3: Fuzzing
	Slide 4: Where We’re At
	Slide 5: Previously: LLVM Instrumentation
	Slide 6: This Lesson: Fuzzing
	Slide 7: History of Fuzzing
	Slide 8: breaking circular logic
	Slide 9: Graceful Failure
	Slide 10: The Simplest Fuzzer
	Slide 11: Exploring unexpected Behavior
	Slide 12: Prioritizing Input
	Slide 13: Simple Testing Strategy
	Slide 14: Mutation-Based Fuzzers
	Slide 15: Representative Tool: AFL
	Slide 16: Representative Tool: AFL
	Slide 17: Representative Tool: AFL
	Slide 18: Fuzzing Oracles
	Slide 19: Research Direction: “Gunking”
	Slide 20: Wrap-up

