EXERCISE #13

INFORMATION FLOW REVIEW
Write your name and answer the following on a piece of paper

« Give an example of a (pseudocode) program with an information flow that may be
considered to violate integrity. Explain why the program violates integrity.

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Let’s read a paper!

Operating R.S. Gaines
Systems Editor

Certification of
Programs for Secure
Information Flow

Dorothy E. Denning and Peter J. Denning
Purdue University

This paper presents a certification mechanism for
verifying the secure flow of information through a pro-
gram. Because it exploits the properties of a lattice
structure among security classes, the procedure is suf-
ficiently simple that it can easily be included in the
analysis phase of most existing compilers. Appropriate
semantics are presented and proved correct. An impor-
tant application is the confinement problem: The
mechanism can prove that a program cannot cause
supposedly nonconfidential results to depend on confi-
dential input data.

Key Words and Phrases: protection, security, infor-
mation flow, program certification, lattice, confine-
ment, security classes

CR Categories: 4.3, 4.35, 5.24

Copyright & 1977, Association for Computing Machinery, Ing,
General permission 1o republish, but not for profit, all or pant of
this material is granted provided that ACM's copyright notice is
given and that reference is made 1w the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

Work reported herein was supported in part by the Nagional
Science Foundation under grants GJ-43176 and GJ-41289 and by
I1BM uwnder a fellowship. Authors® present address: Computer Sci-
ence Department, Purdue University, West Lafayette, IN 47907,

504

1. Introduction

Computer system security relies in part on informa-
tion flow control, that is, on methods of regulating the
dissemination of information among objects through-
out the system. An information flow policy specifies a
set of securiry classes for information, a flow relation
defining permissible flows among these classes, and a
method of binding each storage object to some class.
An operation, or series of operations, that uses the
value of some object, say x, to derive a value for
another, say y, causes a flow from x to y. This flow is
admissible in the given flow policy only if the security
class of x flows into the security class of y.

Prior work on the enforcement of flow policies has
concentrated on run-time mechanisms. One type of
mechanism enforces a given flow policy by controlling
processes’ read and write access rights to objects: no
process may acquire read access for an input object, or
write access for an output object, unless the security
class of every input flows into the security class of every
oulput —even if some outputs depend on only a subset
of the inputs. ADEPT-50 [30], the Case system [29],
the MITRE system [3, 23], and the Privacy Restriction
Processor [26] are of this type. These mechanisms are
generally easy to implement because they make no
attempt to examine the structure of a program. A
second type of (more complex) mechanism accounts for
program structures in order to determine flows be-
tween specific input and output objects. Fenton's data
mark machine {10], the mechanism of Gat and Saal
[13], and the surveillance mechanism of Jones and
Lipton [19] are of this type. The surveillance mecha-
nism employs a program transformation to insure that
all flows are properly accounted for at run time. A
detailed discussion of all these mechanisms can be
found in [7].

This paper presents a compile-time mechanism that
certifies a program only if it specifies no flows in viola-
tion of the flow policy. Besides the aesthetic attraction
of establishing a program’s security before it executes,
a certification mechanism has important advantages. It
can be specified directly in terms of language struc-
tures, which facilitates its comprehension and its proof
of correctness. It greatly reduces the need for run-time
checking. It does not impair a program’s execution
speed. (See also [23]),

Prior certification does not completely eliminate the
need for run-time checking. Run-time support is
needed to raise the tolerance against hardware mal-
functions and other threats to the integrity of certified

Communications July 1977
of Volume 20
the ACM Number 7

Wi

\ "l ?«9 C
S (I\L W\(S ’(”\

,) gVW\ Vs
Q) Sir/eqL\ns

3 >W“\!L"\@ (RS

) Mafurp
e \

CLASS PROGRESS

DETECTING INFORMATION LEAKS
BEFORE THE PROGRAM RUNS

Good fit for static analysis!

LAST TIME: INFORMATION FLOW

REVIEW: LAST LECTURE

AN APPLICATION OF STATIC DATAFLOW TRACKING
Formulation of confidentiality and integrity properties as
dataflow properties

Source: Originator of tagged data

Sink: Consumer of tagged data

MANIFESTATIONS

Confidentiality
— Sources: functions that read “secret” resources
— Sinks: functions that write to “untrusted” places

Integrity
— Sources: functions that read “untrusted” places
— Sinks: functions that write to “sensitive” resources

PRACTICAL
INFORMATION FLOW

EECS 677: Software Security Evaluation

Drew Davidson

OVERVIEW

LET’S SAY WE WANT TO IMPLEMENT THE
DATAFLOW IDEA

How would you actually do it?

LECTURE OUTLINE

e Source/Sink Identification
* Sneaky flows

e Sanitization

ANALYSIS DEPLOYMENT

PRACTICAL CONSIDERATIONS

THIS CLASS IS CONCERNED WITH TWO INCARNATIONS OF SECURE
SOFTWARE EVALUATION:

Proactive SSE — Keep code that you are writing from misbehaving

Reactive SSE — Keep code that you've received from misbehaving

GOOD NEWS:

Pretty straightforward case for the proactive incarnation — deploy analysis as part of
compilation (or CI/CD) workflow

Plausible case for the reactive incarnation — raise a binary program to IR

FURTHER CONSIDERATIONS

PRACTICAL CONSIDERATIONS

LET’S CONSIDER SOME OF THE PRACTICAL ASPECTS OF GETTING THE
ANALYSIS TO DO SOME GOOD

Source / Sink Identification — Where might flows start and end?

Sneaky behavior — How do we deal with code that wants to sneak past
analysis?

SOURCE/SINK IDENTIFICATION

PRACTICAL CONSIDERATIONS

How DO WE KNOW WHAT SHOULD BE A SOURCE AND A SINK?
Mind that semantic gap!

Idea #1 — Programmer annotations

Idea #2 — Build annotations into the system

Idea #3 — something something inferencing handwave

10

PROGRAMMER ANNOTATIONS

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

BASIC IDEA

Ask the programmer to say what's a source and sink
« Auxiliary file of information
* Inline annotations within the program

5 Function Attrs: noinline nounwind optnone uwtable * Function Attrs: info sink

2

define 132 @function2(i8* %arg) #1 {

dso_local i32 @target() #0 {

alloca i32, align 4

alloca i32, align 4

alloca i32*%, align 8

alloca i32*%, align 8

= call i32 @functionl (i8* %strptr)
store 132* %1, i32** %3, align 8 . . . =
%5 = load 132, 132% %1, align 4 ; Function gttr‘s. info_source
% = add nsw i32 %5, 1 define 132 @functionl() #3 {
%7 = sext 132 %6 to i64
inttoptr i64 %7 to i32%*
= call i32 @function2 (i32 %res)
store 132* %8, 132** %4, align 8
ret i32 @

12

PROGRAMMER ANNOTATIONS

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

THE UTILITY OF PROGRAMMER EFFORT C)wch

A frequent struggle in analysis

|SSUES OF HUMAN INTERVENTION
Ultimately, we're trying to solve a Analysis Utility
limitation of human behavior
| L e
* |ncorrect annotations
. N"WL G Loeayg

 Laziness ‘1{7 ‘

- - L \ \
« Reactive SSE goes out the window

Analyst Effort

A totally-made-up conceptual graph

BUILT-IN “ANNOTATIONS”

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

ENRICH THE SYSTEM WITH NOTIONS OF BEHAVIOR

Platform developer bakes capabilities into the system

Analysis developer retrofits annotations into the analysis engine

ISSUES OF SEMANTIC GAP AGAIN

Can be quite hard to predict what becomes security-
relevant

Analysis engine needs to be kept in lockstep with the
system

13

INFERENCING

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

YOU COULD TRY TO AUTOMATICALLY DISCOVER “SOURCELIKE” AND
“SINKLIKE” FUNCTIONS

Maybe we can detect Ul asking for credit card?

Maybe we can write an analysis that looks for even
more fundamental core behavior?

Machine |earning??’?l’?l’?I’?I’?I’?I’)I’?I’?I’?I’?I’)I’)l’?l’?l’?l’)l’)l’?l’?l

14

CASE STUDY: ANDROID PERMISSIONS

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

MOBILE PHONES SURE COLLECT A LOT OF PRIVATE INFORMATION!

Maybe that information rises to the level of confidentiality?

Maybe this is a good application of an information flow analysis?

15

CASE STUDY: ANDROID PERMISSIONS

PRACTICAL CONSIDERATIONS - SOURCE/SINK IDENTIFICATION

HYBRID CASE OF BUILT-IN ANNOTATIONS

System has a built-in capability model

Surprisingly hard to map those capabilities to
system functions

MODELGEN

Manually annotate capabilities as sources or
sinks

Do a dynamic analysis of the Android system
to discover capabilities uses

Do a static dataflow analysis of the Android
system to discover capabilities uses

Modelgen: Mining Explicit
Information Flow Specifications
from Concrete Executions

Lazaro Clapp Saswat Anand Alex Aiken
Stanford University, USA Stanford University, USA Stanford University, USA
lazaro@stanford.edu saswat@cs.stanfordedu aiken@cs.stanford.edu

ABSTRACT

We present a technd
apecifications frsm concrete executions. These specifications
wan be consumed by a stalic lainl analysis, enabling stalic
analysis to work even when method definitions are missing
or portions of the program are too difficult to analyze stat-
ically (o_g., due to dynamic features such as reflection). We

information How

present s Liom of our Lechni Tor the Android
platform. When compared to a sct of mannally written spec-
ifications for 309 methods across 51 classes, our technigue
is able to recover W.36% of these mannal specifications and
produces many Tore
madels missed. We incorporate the gencrated s
intes an existing static taint analysis system, and show that
they enable it to find additional true flows. Although our
implementation is Android-specific, our approach s appli-

b

rorrecl annolalbons Uhal our

: b other application frameworks.

Categories and Subject Deseriptors

F.3.2 [Semantics of Programming Languages|: Pro-
wram analysis; D25 [Software Engineering]: Testing and
Dhebuggring— Trocing

General Terms
Experimentation, Algorithms, Verification

Keywords

Dvnamic analysis; ification mining; inf jon How

1. INTRODUCTION

ng £y]'n« it and aound atatic analysis to real-world
sofiware specially for software written in
modern u'))ﬂLoru nbed Tanguages such as Java, Typically
such software builds upon large and complex frameworks
(e.g., Android, Apsche Struts, and Spring). For soundness
and precision, any analysis of such software entails analysis

Pramitssion 1 ke digital or hand copies of all or pat of s work for personsl o
without fee

o h: e g, Copyeighis. o cosmponcs o ris wirk iwiwad by others than ACM
mmust be bonored. i crudil & i s, or ropublish,
0 post an servers of o redistribule (o lisis, mqnmspmw spenﬁr'pumsmald’nra
fe Request permissaons (o Permissionsacn. o,

Capyright is held by the ownesiauthoris). Publication rights licensed to ACM.
ISSTA'1S, July 13-17, 2015, Baltimore, MDDy, USA

AC

M. 9T 1-4503-3620-8/1 5807
hittpeidx.doi.orgf/ 101 1457277 17832771810

of the framework. However, Uhere are al least fonr problems
Vhaat ke Uhe anadysis of Mramework code challong ;
a very precise analysis of a framework may not scale becanse
most frameworks are very large. Second, framework code
may use dynamic language features, sauch as reflection in
Java, which are I ieally. Third, Trame
works Lypically usc I (e, configuration
files) that hawe special scmantics thet must be modeled for
accurate results. Fourth, frameworks usually build on ab-
i anguages for which & com-
T

vailable (e.g.,
s methonds). Such boregn Funclions sppear 4 tuk
wdc., o the static analysis of the higher-level language.
Ome approach to address these problems is to use specifi-
cations (akso called models) for framework classes and meth-
s, From a high-level pcls Lhese effects of
the: framework code on @
the analysis. The anslysis can then use these specifications
instead of analyzing the framework. Use of specifications
can impry y of an analysis dramatically be
canse specifications arc usually moch smaller than G code
they specify. In addition to use of specifications
can also improve the precision of the anslysis becanse speci-
fications are also simpler (e.g., no dynamic language features
ar ode artifacts) than the corresponding code.
wough use of specifivations can improve buth scalabil
ity and precision of an analysis, obtaining specifications is &
challenging problem in itself. If specifications are computed
by static analysis of the ramework code, the aforementioned
problems An alternative approach is Lo manually
wrile specifications. This approach is nol impracticad be
canse once the specifications for a framework arc written,
those specifications can be used to analyze any piece of soft-
hat mm lhaL framework. However, writing and main-
taining speci ually for a large framework is still
laborious and swser (o human error. Dynamic anal
ysis, which observes concrete executions of & program and
meneralizes to produce specifications, represents an atirme-
tive third alternative. Mining specifications from execution
Lraees, Lo be

4

T szl

comsumed by a static analysis, i not a novel
iden, For example, some technigees produce control-low
spocifications (e, |2, 50, 34, 20, 36]), while others diseower
general pre- and pash—cundiliom. o mclhods (e.g., Daikon
[15]). However, we are i d in mung i ion-flow
specifications 1 through d ;
els Lo be consumed by a stalic analysis, This is o problem

that, to our knowledge, his not been previously explored.

alysis as mod

16

LECTURE OUTLINE

e Source/Sink Identification
* Sneaky flows

e Sanitization

SNEAKY FLOWS

PRACTICAL CONSIDERATIONS - SNEAKY FLOWS

MIGHT AN ADVERSARY ATTEMPT TO AVOID DETECTION?

The proliferation of tools for Android analysis gives them an obvious incentive

I'M A SNEAKY FOX

i

»
" ,? o ?— /"
/
.

[/

SNEAKY FLOWS

PRACTICAL CONSIDERATIONS - SNEAKY FLOWS

IMPLICIT FLOWS

CONTROL DEPENDENCIES

T PRACTICAL CONSTDERATTONS =SNEAKY FLOWS

5 & Jourl @
WI Net €574 <

; \0 :'],“¥1:V\
bool b = isActuallyAnEvilSpy () ’r(' <\4 > 100 ks% b - \Ol)é

bool c;
if (b == true){

c = true; C- \O\

} else {
c = false;

} .fC“/{T}vVkao/‘L <:C
sendToNetwork (c) ;

LECTURE OUTLINE

e Source/Sink Identification
* Sneaky flows

* Precision / Sanitization

GRANULARITY OF ANALYSIS

PRACTICAL CONSIDERATIONS - PRECISION/SANITIZATION

DATA IS COMPLEX!

What happens when a field of a struct is tainted?

What happens when an index of an array is tainted?

22

SANITIZATION

PRACTICAL CONSIDERATIONS - PRECISION/SANITIZATION

WE ALSO WANT TO PROVIDE SOME EXCEPTIONS TO THE FLOW RULES

l.e. tainted data is encrypted

ves £ QV\CW\/\U\F QO\VD

23

HOW DO WE FIX OUR LEAKY PROGRAMS?

	Slide 1: Exercise #13
	Slide 2: Administrivia and Announcements
	Slide 3: Class Progress
	Slide 4: Last Time: Information Flow
	Slide 5: Practical Information Flow
	Slide 6: Overview
	Slide 7: Lecture Outline
	Slide 8: Analysis Deployment
	Slide 9: Further Considerations
	Slide 10: Source/Sink Identification
	Slide 11: Programmer Annotations
	Slide 12: Programmer Annotations
	Slide 13: Built-In “Annotations”
	Slide 14: Inferencing
	Slide 15: Case Study: Android Permissions
	Slide 16: Case Study: Android Permissions
	Slide 17: Lecture Outline
	Slide 18: Sneaky Flows
	Slide 19: Sneaky Flows
	Slide 20: Control Dependencies
	Slide 21: Lecture Outline
	Slide 22: Granularity of analysis
	Slide 23: Sanitization
	Slide 24: Wrap-up
	Slide 25: Next Time

