
EXERCISE #13

1

INFORMATION FLOW REVIEW

Write your name and answer the following on a piece of paper

• Give an example of a (pseudocode) program with an information flow that may be

considered to violate integrity. Explain why the program violates integrity.

ADMINISTRIVIA
AND
ANNOUNCEMENTS

Let’s read a paper!

CLASS PROGRESS

DETECTING INFORMATION LEAKS
BEFORE THE PROGRAM RUNS

3

Good fit for static analysis!

4

LAST TIME: INFORMATION FLOW
REVIEW: LAST LECTURE

AN APPLICATION OF STATIC DATAFLOW TRACKING

Confidentiality

– Sources: functions that read “secret” resources

– Sinks: functions that write to “untrusted” places

Formulation of confidentiality and integrity properties as

dataflow properties

MANIFESTATIONS

Integrity

– Sources: functions that read “untrusted” places

– Sinks: functions that write to “sensitive” resources

Source: Originator of tagged data

Sink: Consumer of tagged data

PRACTICAL
INFORMATION FLOW
EECS 677: Software Security Evaluation

Drew Davidson

OVERVIEW

LET’S SAY WE WANT TO IMPLEMENT THE
DATAFLOW IDEA

6

How would you actually do it?

LECTURE OUTLINE

• Source/Sink Identification

• Sneaky flows

• Sanitization

8

ANALYSIS DEPLOYMENT
PRACTICAL CONSIDERATIONS

THIS CLASS IS CONCERNED WITH TWO INCARNATIONS OF SECURE
SOFTWARE EVALUATION:

Proactive SSE – Keep code that you are writing from misbehaving

Reactive SSE – Keep code that you’ve received from misbehaving

GOOD NEWS:

Pretty straightforward case for the proactive incarnation – deploy analysis as part of

compilation (or CI/CD) workflow

Plausible case for the reactive incarnation – raise a binary program to IR

9

FURTHER CONSIDERATIONS
PRACTICAL CONSIDERATIONS

LET’S CONSIDER SOME OF THE PRACTICAL ASPECTS OF GETTING THE
ANALYSIS TO DO SOME GOOD

Source / Sink Identification – Where might flows start and end?

Sneaky behavior – How do we deal with code that wants to sneak past

analysis?

10

SOURCE/SINK IDENTIFICATION
PRACTICAL CONSIDERATIONS

HOW DO WE KNOW WHAT SHOULD BE A SOURCE AND A SINK?

Idea #1 – Programmer annotations

Idea #2 – Build annotations into the system

Idea #3 – something something inferencing handwave

Mind that semantic gap!

11

PROGRAMMER ANNOTATIONS
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

BASIC IDEA

Ask the programmer to say what’s a source and sink

• Auxiliary file of information

• Inline annotations within the program

12

PROGRAMMER ANNOTATIONS
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

THE UTILITY OF PROGRAMMER EFFORT

Analysis Utility

Analyst Effort

A totally-made-up conceptual graph

A frequent struggle in analysis

ISSUES OF HUMAN INTERVENTION

• Incorrect annotations

Ultimately, we’re trying to solve a

limitation of human behavior

• Reactive SSE goes out the window

• Laziness

13

BUILT-IN “ANNOTATIONS”
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

ENRICH THE SYSTEM WITH NOTIONS OF BEHAVIOR

Analysis developer retrofits annotations into the analysis engine

Platform developer bakes capabilities into the system

ISSUES OF SEMANTIC GAP AGAIN

Can be quite hard to predict what becomes security-

relevant

Analysis engine needs to be kept in lockstep with the

system

14

INFERENCING
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

YOU COULD TRY TO AUTOMATICALLY DISCOVER “SOURCELIKE” AND
“SINKLIKE” FUNCTIONS

Maybe we can detect UI asking for credit card?

Machine learning??

Maybe we can write an analysis that looks for even

more fundamental core behavior?

?!

15

CASE STUDY: ANDROID PERMISSIONS
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

MOBILE PHONES SURE COLLECT A LOT OF PRIVATE INFORMATION!

Maybe that information rises to the level of confidentiality?

Maybe this is a good application of an information flow analysis?

16

CASE STUDY: ANDROID PERMISSIONS
PRACTICAL CONSIDERATIONS – SOURCE/SINK IDENTIFICATION

HYBRID CASE OF BUILT-IN ANNOTATIONS

System has a built-in capability model

Surprisingly hard to map those capabilities to

system functions

MODELGEN

- Do a dynamic analysis of the Android system

to discover capabilities uses

- Manually annotate capabilities as sources or

sinks

- Do a static dataflow analysis of the Android

system to discover capabilities uses

LECTURE OUTLINE

• Source/Sink Identification

• Sneaky flows

• Sanitization

18

SNEAKY FLOWS
PRACTICAL CONSIDERATIONS – SNEAKY FLOWS

MIGHT AN ADVERSARY ATTEMPT TO AVOID DETECTION?

The proliferation of tools for Android analysis gives them an obvious incentive

19

SNEAKY FLOWS
PRACTICAL CONSIDERATIONS – SNEAKY FLOWS

IMPLICIT FLOWS

20

CONTROL DEPENDENCIES
PRACTICAL CONSIDERATIONS – SNEAKY FLOWS

bool b;

bool c;

b = isActuallyAnEvilSpy()

c = b;

sendToNetwork(c);

bool b = isActuallyAnEvilSpy()

bool c;

if (b == true){

 c = true;

} else {

 c = false;

}

sendToNetwork(c);

LECTURE OUTLINE

• Source/Sink Identification

• Sneaky flows

• Precision / Sanitization

22

GRANULARITY OF ANALYSIS
PRACTICAL CONSIDERATIONS – PRECISION/SANITIZATION

DATA IS COMPLEX!

What happens when a field of a struct is tainted?

What happens when an index of an array is tainted?

23

SANITIZATION
PRACTICAL CONSIDERATIONS – PRECISION/SANITIZATION

WE ALSO WANT TO PROVIDE SOME EXCEPTIONS TO THE FLOW RULES

i.e. tainted data is encrypted

WRAP-UP

NEXT TIME

HOW DO WE FIX OUR LEAKY PROGRAMS?

25

	Slide 1: Exercise #13
	Slide 2: Administrivia and Announcements
	Slide 3: Class Progress
	Slide 4: Last Time: Information Flow
	Slide 5: Practical Information Flow
	Slide 6: Overview
	Slide 7: Lecture Outline
	Slide 8: Analysis Deployment
	Slide 9: Further Considerations
	Slide 10: Source/Sink Identification
	Slide 11: Programmer Annotations
	Slide 12: Programmer Annotations
	Slide 13: Built-In “Annotations”
	Slide 14: Inferencing
	Slide 15: Case Study: Android Permissions
	Slide 16: Case Study: Android Permissions
	Slide 17: Lecture Outline
	Slide 18: Sneaky Flows
	Slide 19: Sneaky Flows
	Slide 20: Control Dependencies
	Slide 21: Lecture Outline
	Slide 22: Granularity of analysis
	Slide 23: Sanitization
	Slide 24: Wrap-up
	Slide 25: Next Time

