EXERCISE #25

LINTING REVIEW
Write your name and answer the following on a piece of paper

Give an example of a legal program in C that a linter would nevertheless flag



&WZ L @mAf/f FOWH/CVM\M}
Cﬂfu\?— o mﬁqf e bore

ADMINISTRIVIA
AND
ANNOUNCEMENTS



PROGRAM
INSTRUMENTATION

EECS 677: Software Security Evaluation

Drew Davidson



LAST TIME: LINTING

REVIEW: LAST LECTURE

REMOVING THE “STRAY FIBERS” OF A
PROGRAM

Analyze common “anti-patterns” that are likely
to cause issues (security and otherwise)

NOTABLE ANALYSIS TOOLS

Lint — The original analysis tool
Splint — Security analysis tool




CLASS PROGRESS

MOVING ON TO DYNAMIC ANALYSIS

More heuristic by nature



LIMITS OF STATIC ANALYSIS

PROGRAM INSTRUMENTATION: BASIC IDEA

PRACTICAL ISSUES

- Unsoundness of bug finding /
incompleteness of program verification
- Scalability

- Significant engineering effort

UNTIL YOU SpreaD YOUR WINGS,
You’lt HAVE NO Ipea How Far You CAN WALK.




REVISING DYNAMIC ANALYSIS

PROGRAM INSTRUMENTATION: BASIC IDEA

GIVING UP ON GUARANTEES

- Finding bugs (even “low-hanging fruit”)
is useful!

ADVANTAGES

- Simplest form: testing

-G \z
Co g (\\47 >( — Pv{‘(&f (/UH,~ Perhaps | treated you too harshly




BEYOND TESTING

PROGRAM INSTRUMENTATION: BASIC IDEA

LIMITATIONS OF “PLAIN” TESTING

- Property may not be immediately
observable from output alone

- The circumstances under which the
issue occurs may not be obvious




INSERTING PROGRAM PROBES

PROGRAM INSTRUMENTATION: BASIC IDEA

INSERT CHECKS / REPORTS INTO THE \Mf- i"@/f VZWV\ 4((47 { [7&8

ANALYSIS TARGET q/( vy Cﬁ[ A
Addresses both of the previous issues — can (7 L
report upon program state and even program

path

A NEW CONCERN — THE EFFICIENCY
OF THE (INSTRUMENTED) PROGRAM

Potential slowdown on each program path

LACK OF HOLISTIC INFORMATION Q/‘ L'
A doe C“L(CW(LF L
c_ )"

Somewhat limited by the information the
probes can report



EXAMPLE: CONTROL PROFILING

PROGRAM INSTRUMENTATION: BASIC IDEA

COUNTING HOW MANY TIMES CERTAIN
BEHAVIORS OF THE PROGRAM ARE
EXERCISED

Why is this useful? (Placing sanitizers)

THIS ACTUALLY TURNS OUT TO BE A
LITTLE BIT TRICKY!

Actually turns out to be a little bit tricky!

We’ll describe some of the issues / solution as
per Ball and Larus, *

\3@\( &w{ kaxqs 776

fov (= ). - (dodggw ) §
T et

:
TLEAK (V)

10



BRANCH FREQUENCY

PROGRAM INSTRUMENTATION: APPROACH

NAIVE APPROACH: INSTRUMENT
PROBES AT EACH EDGE

Inefficient!

We don’t really need an A -> B counter
(it’s the sum of the B-> C and B -> D counters)

A

12 150

13-—]iir——(:

20 ;‘(;50
D

160 10

E

a

F

270

160

11



EXAMPLE: COVERAGE / FREQUENCY

PROGRAM INSTRUMENTATION: APPROACH

EXAMPLE OF INSTRUMENTATION:
COUNTING EXECUTION FREQUENCY

Why is this useful? (Placing sanitizers)

u+v
t+tu+v-w

Let’s first consider inserting edge counters

3|
W th
| I T T

ot =

+tu+v

Inefficient!

We don’t really need an A -> B counter
(it’s the sum of the B-> C and B -> D counters)




NAIVE IMPLEMENTATION: SUM UP

EDGE COUNTERS

Path

ACDF
ACDEF
ABCDF
ABCDEF
ABDF
ABDEF

Profl Prof2
90 110
60 40

0 0

100 100
20 0

0

20

PATH FREQUENCY

PROGRAM INSTRUMENTATION: APPROACH

120'/ \\150

B

—.»

00

C

160

1
20 A

D

250

10

E

&

F

270

160

13



EFFICIENT PATH AND BRANCH COUNTERS

PROGRAM INSTRUMENTATION: APPROACH

BALL AND LARUS ‘96

Intuition:

- Assign integer values to edges such that
no two paths

compute the same path sum (Section 3.2).
— Select edges to instrument using a
spanning tree

Efficient Path Profiling

Thomas Ball
Bell Laboratories
Lucent Technologies
thall @research.bell-labs.com

Abstract

A path profile determines how many times ¢ach acyelic
path in g rowsing execures, This type of profiling subsumes
the mure conmon basic block and edge profiling, which only
approximate path freguencies. Patk prafiles have many po-
tential wses in program performance luning, profile-direcred
compilation, and software test caverage.

This paper describes a new algorithm for path profil-
ing. This simple, fast algorithm selects and places profile in-
Strumentation to minimize run-fime overhead. Instrumented
programs run with everhead comparable to the best previ-
o profiling technigues. On the SPECYS benchmarks, path
profiling overhead averaged 31%. as compared to 16% for
efficient edge profiling, Path profiling also identifies longer
parhs than a previous technigue, which predicted paths from
edge profiles (average of 88, versus 34 instructions). More-
over, profiling shows that the SPECYS train input datasets
covered most of the paths executed in the ref datasets.

1 Introduction

Program profiling counts sccurrences of an event during
a program's execution. Typically, the measured event is the
exccution of a local portion of a program, such as a rou-
tine or line of code. Recently, fine-grain profiles—of basic
blocks and control-flow edges—have become the hasis for
profile-driven compilation, which uses measured [requen-
cies w guide compilation and optimization.

T huss vesvanch sup ponted by: Wiight Labormeery Avionics Directorate,
A Fosoe Material Command. USAF, under gront #F33613.94-1-
1525 znd ARPA order no, S50 NSF WYL Award CCR-337779,
with support from Hewlelt Packard, Sun Micresystems, and PGL
MSF Crant MIPAXIS0T, and DOE Grant DE FOO2-43ERIS1TS
The U5, Governanent is autharized to reproduce and distribure reprints for
G | pusposes i ing any copyright nolation thereon.
The vews and conclusions cootained herein are those of the asthors and
should not be ) us necessarily ing the official policies
or endersements, sither expressed o implied, af the Wright Laburtory
Avianics Dircelorate o e U S, Govermmem.

James R. Larus®
Dept. of Computer Sciences
Iniversity of Wisconsin-Madison
larus @cs.wisc.edu

Path Profl Erof?

ACDF an 110
ACDEF &an 40
ABCDF a o
ABCDEF 100 100
ABLDF 20 1]
ABDEF [i] 2

Flgure 1. Example in which edge profiling does not iden-
ufy the most frequently executed paths. The lable con-
tains two different path profiles. Both path profiles in-
duce the same edge execution frequencies, shown by the
edge frequencies in the control-flow graph. In path profile
Profl, path ARCDEF 15 most [requently executed, al-
though the heuristic of following edges with the highest fre-
quency identifies path AC T EF as the most frequent.

One use of profile information is to identify heavily exe-
cuted paths (or traces) in a program [Fis81, E1I8S, Chaii,
YS894]. Unforiunately, basic block and edge profiles, al-
though inexpensive and widely available, do not always cor-
rectly predict frequencies of overlapping paths. Consider,
for example, the control-flow graph (CFG) in Figure 1. Each
edge in the CFG is labeled with its frequency, which nor-
mally results from dynamic profiling, but in the figure is
induced by both path profiles in the table. A commonly
used heuristic w select a heavily exccuted path follows the
must lrequently executed edge out of a basic biock [Cha88],
which identifies path ACDEF. However, in path profile
Prof1, this path executed only 60 times, as compared (o 90
times for path ACDF and 100 times for path ABCDEF.
In profile Prof2, the disparity is even greater although the
edpe profile is exactly the same.

This inaccuracy is usually ignored, under the assump-
tion thal accurate path profiling must be far more expensive
than basic block or edge profiling. Path profiling is the ul-
timate form of control-flow profiling, as it uniquely deter-

14



INSTRUMENTATION APPROACHES

PROGRAM INSTRUMENTATION: APPROACH

STATIC INSTRUMENTATION DYNAMIC INSTRUMENTATION
Add probes before the program is run (i.e. Probe while the program is run (i.e. insert
rewrite the program executable) probes just-in-time or as part of the

environment)
—) ( {
| 5~ [—> T comior 2T .

15



DYNAMIC INSTRUMENTATION TOOLS

PROGRAM INSTRUMENTATION: APPROACH

FREQUENTLY INVOLVE A CUSTOM RUNTIME

Add probes before the program is run (i.e.
rewrite the program executable)

EXAMPLES
Intel PIN

GDB



DYNAMIC INSTRUMENTATION EXAMPLE: GDB

PROGRAM INSTRUMENTATION: APPROACH

#include "stdio.h" gcc -00 —g prog.c —o prog
int main(){ gdb prog
int a = 1; b5

if (a == 1){

printf("TRUE BRANCH: A is %d\n", a);
} else {

printf("FALSE BRANCH: A is %d\n", a);

set variable a = 3

n

}

1
2
3
4
5
6
7
8
9
(%]

}

(WY



WRAP-UP

WE’VE DESCRIBED 2 FORMS OF
ALTERING THE PROGRAM

More heuristic by nature



	Slide 1: Exercise #25
	Slide 2: Administrivia and  Announcements
	Slide 3: Program Instrumentation
	Slide 4: Last Time: Linting
	Slide 5: Class Progress
	Slide 6: Limits of Static Analysis
	Slide 7: Revising Dynamic Analysis
	Slide 8: Beyond Testing
	Slide 9: Inserting program Probes
	Slide 10: Example: Control PRofiling
	Slide 11: Branch Frequency
	Slide 12: Example: Coverage / Frequency
	Slide 13: Path Frequency
	Slide 14: Efficient Path and Branch Counters
	Slide 15: Instrumentation Approaches
	Slide 16: Dynamic Instrumentation Tools
	Slide 17: Dynamic Instrumentation Example: GDB
	Slide 18: Wrap-up

