
EXERCISE #19

1

CALL GRAPHS REVIEW

Write your name and answer the following on a piece of paper

Draw the callgraph that CHA would produce for the following program:

int

ADMINISTRIVIA
AND
ANNOUNCEMENTS

INTERPROCEDURAL
ANALYSIS
EECS 677: Software Security Evaluation

Drew Davidson

CLASS PROGRESS

EXPLORING ANALYSES UNDERLYING OUR
EVALUATION/ENFORCEMENT NEEDS

4

Intraprocedural analysis: Within a function

Interprocedural analysis: Between functions

5

LAST TIME: CALL GRAPHS
REVIEW: LAST LECTURE

DETERMINE WHERE A (POSSIBLY
INDIRECT) CALL MIGHT GO

Motivation

– Powers some forms of CFI

Implementation

– Consider ALL functions

– Consider functions in the “cone” (CHA)

– Consider functions in the cone that might be

used (RTA, MTA, FTA, XTA)

OVERVIEW

WE’VE SEEN THE NECESSITY OF MULTI-
FUNCTION ANALYSIS IN REAL-WORLD
PROGRAMS

TIME TO CONSIDER HOW IT IS DONE

6

8

WORST-CASE ASSUMPTIONS
NAÏVE APPROACH

CREATE SIMPLE, “SAFE”
OVER-APPROXIMATION

What constitutes “being safe”

depends on your analysis

– Example 1, confidentiality: Assume

a function call tags all reachable

data as confidential

– Example 2, integrity: Assume a

function call tags all reachable

data as untrusted

9

JUSTIFICATION
NAÏVE APPROACH

OUR GENERAL PHILOSOPHY:
“DO NO HARM” GUARANTEES

Recall our notions of soundness and completeness:

- Sound: no false positives (“tells no lie”)

- Complete: no false negatives (“omits no truth”)
ANYTHING THAT CAN GO WRONG
WILL GO WRONG

- MURPHY’S LAW

bug hunting:

 - Report buggy programs

 - Safe means complete analysis

program verification:

 - Report clean programs

 - Safe means sound analysis

“BEING SAFE” REQUIRES
FORMULATING ANALYSIS GOAL

10

11

int main(){

 a = v(1);

v = v(2);

return 1 / a;

int v(int p){

 if (p > 0)

return 1;

(exit)

return 0;

Interprocedural control flow graph

Benefits

 - No extra machinery required

Detriments

 - Extra imprecision

USE THE ICFG (AKA “SUPERGRAPH”)

STITCH TOGETHER CFGS
SUPERGRAPHS

12

13

int main(){

 a = v(1);

v = v(2);

return 1 / a;

int v(int p){

 if (p > 0)

return 1;

(exit)

return 0;

Make a copy of the callee for each call site

THE EXPLODED SUPERGRAPH

STITCH TOGETHER CFGS
SUPERGRAPHS

int v(int p){

 if (p > 0)

return 1;

(exit)

return 0;

14

15

16

PROVIDE A WAY TO SPECIFY DEGREE
OF CONTEXT

CALL STRINGS
SUPERGRAPHS

Recursion: Unbounded depth of context

Call string depth

X-CFA, where X is the length of the call string

- 0-CFA: Context-insensitive

- 1-CFA: Tracker caller (but not caller’s caller)

hf gmain

ANOTHER WAY TO TUNE STATIC
ANALYSIS
Flow-sensitive: Unbounded depth of context

Context-sensitive: Track the call string

17

18

BIG IDEA

SUMMARY FUNCTIONS
SUPERGRAPHS

Summarize callee analysis (rather than

include it in the analysis)

AUTOMATIC MANIFESTATION

Create a lightweight inference

One version: GMOD and GREF

- What variables are (transitively) modified as a

result of a function call?

- What variables are (transitively) referenced as a

result of a function call?

MANUAL MANIFESTATION
Ask the user to provide information

19

20

VERSION 1: GLOBALS ONLY

GMOD AND GREF
SUPERGRAPHS

Step 1: Construct Call Graph,

normalize program assignments

Step 2: Initialize GMod and Gref

- GMod: initialize to variables on the

LHS of assignments

- Gref: initialize to variabels on the

RHS of statements

Step 3: Collapse SCCs

Step 4: Add a dummy edge from

leaves to dummy exit

Step 5: Do a backwards dataflow on

the augmented callgraph

h

f

g

main

h

f

main

k

g/k h

f

main

g/k

(exit)

	Slide 1: Exercise #19
	Slide 2: Administrivia and Announcements
	Slide 3: Interprocedural Analysis
	Slide 4: Class Progress
	Slide 5: Last Time: Call Graphs
	Slide 6: Overview
	Slide 8: worst-Case Assumptions
	Slide 9: Justification
	Slide 10
	Slide 11: Stitch together CFGs
	Slide 12
	Slide 13: Stitch together CFGs
	Slide 14
	Slide 15
	Slide 16: Call Strings
	Slide 17
	Slide 18: summary Functions
	Slide 19
	Slide 20: GMOD and GREF

