
EXERCISE #24
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SSDLC REVIEW

Write your name and answer the following on a piece of paper

At what point in the software development life cycle should threat modelling begin?



ADMINISTRIVIA
AND 
ANNOUNCEMENTS

We have to talk about Quiz 1

A tale of two classes…

Preparing for Quiz 2

Review session Wednesday at 7:00 – 9:00 (tentative)

EECS 677:

Average grade: ~84%

Highest grade: 50/50

Lowest grade: 25/50

Median grade: ~89%

EECS 700:

Average grade: ~53%

Highest grade: 50/50

Lowest grade: 8/50

Median grade: ~50%



LINTING
EECS 677: Software Security Evaluation

Drew Davidson
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LAST TIME: SSDLC
REVIEW: LAST LECTURE

CORRESPONDING SECURITY TASKS FOR 
THE SOFTWARE DEVELOPMENT LIFECYCLE

Requirement Analysis – Risk Assessment and 

Threat models

Design – Security Design Review

Development – Automated Code Analysis

Testing – Security Testing and Code Review

Maintenance and Evolution – Security 

Assessment and Configuration



CLASS PROGRESS

HANDLING THE “SOFTER SIDE” OF 
SECURITY EVALUATION
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We’ve described some of the high-level best-

practices, let’s talk about tool support



LECTURE OUTLINE

• Background / Context

• Linting

• Anti-Patterns

• Splint
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SAD FACT: IT’S EASY TO WRITE INSECURE CODE
LINTING: BACKGROUND/CONTEXT

MANY PROGRAMMING LANGUAGES 
HAVE EXPLOITABLE CONSTRUCTS

Programming constructs that do not operate as 

intended under unforeseen circumstances

Artistic depiction of C programming
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RECALL: SECURITY V USABILITY
LINTING OVERVIEW

MAINSTREAM PL PHILOSOPHY 
PRIORITIZES SPEED AND SIMPLICITY

C could do more checking, but it doesn’t

- Bounds checking 

- Type safety
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RECALL: SECURITY V USABILITY
LINTING OVERVIEW

EXPECTATIONS OF EFFICIENCY AND 
PERFORMANCE ARE HARD TO QUIT!

Disallowing unsafe behavior means going back 

on what’s already been accomplished

- Rewrite legacy code

- Give up on some performance 
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CASE STUDY: MELTDOWN AND SPECTRE
LINTING OVERVIEW

THE PROBLEM: BRANCH PREDICTORS 
AND SPECULATIVE EXECUTION

Impact: leaking secrets

THE SOLUTION: MEDIATE SPECULATIVE 
EXECUTION

Early Fix performance: 

OS Bench: 

Intel Xeon 84~87% 

AMD EPYC 91~94%.
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RECALL: SECURITY V USABILITY
LINTING OVERVIEW

WAITING FOR BETTER TOOLS

Some feel that the whole of imperative 

programming is inherently unsafe
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RECALL: SECURITY V USABILITY
LINTING OVERVIEW



LECTURE OUTLINE

• Background / Context

• Linting

• Anti-Patterns

• Splint
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HEURISTIC TOOLS FOR AN IMPERFECT WORLD
LINTING: OVERVIEW

TRY NOT TO SHOOT YOURSELF IN THE FOOT

Highlight the stuff you probably shouldn’t be 

doing in the first place
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CATCH “ANTI-PATTERNS”
HUMAN FACTORS OF SECURITY

COMMON LANGUAGE-LEGAL PAIN-
POINTS

Code that is highly situational, or simply 

shouldn’t be legal in hindsight
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HISTORY: JOHNSON, 1978
HUMAN FACTORS OF SECURITY

NAME INSPIRED BY DRYER LINT TRAPS

Capture the “loose fibers” that come off the 

program

Leave the whole of the program intact

CREATED A PROGRAM CALLED “LINT”

Aided in the development of YACC

Originally internal to Bell Labs, eventually 

open-sourced
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PRODUCTION LINTERS
LINTING

MORE MODERN TOOLS

cppcheck – open-source linter

flake8 – python linter

cpplint – Google’s in-house (open-source) linter

Good reminder that coding is still a human process

Also ensures adherence to style guide:

https://google.github.io/styleguide/cppguide.html

https://google.github.io/styleguide/cppguide.html


LECTURE OUTLINE

• Background / Context

• Linting

• Anti-Patterns

• Splint
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ASSIGNMENT IN PREDICATE
LINTING
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MACRO POLLUTION
LINTING
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SEPARATING INITIALIZATION FROM USE
LINTING
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SEPARATING INITIALIZATION FROM USE
LINTING
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LINE CONTINUATION WEIRDNESS
LINTING
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SCOPED INITIALIZATION
LINTING
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NAMESPACING (GOOD)
LINTING
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HEURISTIC TOOLS FOR AN IMPERFECT WORLD
LINTING: OVERVIEW

TRY NOT TO SHOOT YOURSELF IN THE FOOT

Highlight the stuff you probably shouldn’t be 

doing in the first place
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RECALL: SECURITY V USABILITY
LINTING OVERVIEW

MANY PROGRAMMING LANGUAGES 
HAVE EXPLOITABLE CONSTRUCTS

Capture the “loose fibers” that come off the 

program

Leave the whole of the program intact
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