
EXERCISE #24

1

SSDLC REVIEW

Write your name and answer the following on a piece of paper

At what point in the software development life cycle should threat modelling begin?

ADMINISTRIVIA
AND
ANNOUNCEMENTS

We have to talk about Quiz 1

A tale of two classes…

Preparing for Quiz 2

Review session Wednesday at 7:00 – 9:00 (tentative)

EECS 677:

Average grade: ~84%

Highest grade: 50/50

Lowest grade: 25/50

Median grade: ~89%

EECS 700:

Average grade: ~53%

Highest grade: 50/50

Lowest grade: 8/50

Median grade: ~50%

LINTING
EECS 677: Software Security Evaluation

Drew Davidson

4

LAST TIME: SSDLC
REVIEW: LAST LECTURE

CORRESPONDING SECURITY TASKS FOR
THE SOFTWARE DEVELOPMENT LIFECYCLE

Requirement Analysis – Risk Assessment and

Threat models

Design – Security Design Review

Development – Automated Code Analysis

Testing – Security Testing and Code Review

Maintenance and Evolution – Security

Assessment and Configuration

CLASS PROGRESS

HANDLING THE “SOFTER SIDE” OF
SECURITY EVALUATION

5

We’ve described some of the high-level best-

practices, let’s talk about tool support

LECTURE OUTLINE

• Background / Context

• Linting

• Anti-Patterns

• Splint

7

SAD FACT: IT’S EASY TO WRITE INSECURE CODE
LINTING: BACKGROUND/CONTEXT

MANY PROGRAMMING LANGUAGES
HAVE EXPLOITABLE CONSTRUCTS

Programming constructs that do not operate as

intended under unforeseen circumstances

Artistic depiction of C programming

8

RECALL: SECURITY V USABILITY
LINTING OVERVIEW

MAINSTREAM PL PHILOSOPHY
PRIORITIZES SPEED AND SIMPLICITY

C could do more checking, but it doesn’t

- Bounds checking

- Type safety

9

RECALL: SECURITY V USABILITY
LINTING OVERVIEW

EXPECTATIONS OF EFFICIENCY AND
PERFORMANCE ARE HARD TO QUIT!

Disallowing unsafe behavior means going back

on what’s already been accomplished

- Rewrite legacy code

- Give up on some performance

10

CASE STUDY: MELTDOWN AND SPECTRE
LINTING OVERVIEW

THE PROBLEM: BRANCH PREDICTORS
AND SPECULATIVE EXECUTION

Impact: leaking secrets

THE SOLUTION: MEDIATE SPECULATIVE
EXECUTION

Early Fix performance:

OS Bench:

Intel Xeon 84~87%

AMD EPYC 91~94%.

11

RECALL: SECURITY V USABILITY
LINTING OVERVIEW

WAITING FOR BETTER TOOLS

Some feel that the whole of imperative

programming is inherently unsafe

12

RECALL: SECURITY V USABILITY
LINTING OVERVIEW

LECTURE OUTLINE

• Background / Context

• Linting

• Anti-Patterns

• Splint

14

HEURISTIC TOOLS FOR AN IMPERFECT WORLD
LINTING: OVERVIEW

TRY NOT TO SHOOT YOURSELF IN THE FOOT

Highlight the stuff you probably shouldn’t be

doing in the first place

15

CATCH “ANTI-PATTERNS”
HUMAN FACTORS OF SECURITY

COMMON LANGUAGE-LEGAL PAIN-
POINTS

Code that is highly situational, or simply

shouldn’t be legal in hindsight

16

HISTORY: JOHNSON, 1978
HUMAN FACTORS OF SECURITY

NAME INSPIRED BY DRYER LINT TRAPS

Capture the “loose fibers” that come off the

program

Leave the whole of the program intact

CREATED A PROGRAM CALLED “LINT”

Aided in the development of YACC

Originally internal to Bell Labs, eventually

open-sourced

17

PRODUCTION LINTERS
LINTING

MORE MODERN TOOLS

cppcheck – open-source linter

flake8 – python linter

cpplint – Google’s in-house (open-source) linter

Good reminder that coding is still a human process

Also ensures adherence to style guide:

https://google.github.io/styleguide/cppguide.html

https://google.github.io/styleguide/cppguide.html

LECTURE OUTLINE

• Background / Context

• Linting

• Anti-Patterns

• Splint

19

ASSIGNMENT IN PREDICATE
LINTING

20

MACRO POLLUTION
LINTING

21

SEPARATING INITIALIZATION FROM USE
LINTING

22

SEPARATING INITIALIZATION FROM USE
LINTING

23

LINE CONTINUATION WEIRDNESS
LINTING

24

SCOPED INITIALIZATION
LINTING

25

NAMESPACING (GOOD)
LINTING

26

HEURISTIC TOOLS FOR AN IMPERFECT WORLD
LINTING: OVERVIEW

TRY NOT TO SHOOT YOURSELF IN THE FOOT

Highlight the stuff you probably shouldn’t be

doing in the first place

27

RECALL: SECURITY V USABILITY
LINTING OVERVIEW

MANY PROGRAMMING LANGUAGES
HAVE EXPLOITABLE CONSTRUCTS

Capture the “loose fibers” that come off the

program

Leave the whole of the program intact

	Slide 1: Exercise #24
	Slide 2: Administrivia and Announcements
	Slide 3: Linting
	Slide 4: Last Time: SSDLC
	Slide 5: Class Progress
	Slide 6: Lecture Outline
	Slide 7: Sad Fact: It’s easy to write insecure Code
	Slide 8: Recall: Security v Usability
	Slide 9: Recall: Security v Usability
	Slide 10: Case Study: Meltdown and Spectre
	Slide 11: Recall: Security v Usability
	Slide 12: Recall: Security v Usability
	Slide 13: Lecture Outline
	Slide 14: Heuristic tools for an imperfect World
	Slide 15: Catch “Anti-Patterns”
	Slide 16: History: Johnson, 1978
	Slide 17: Production Linters
	Slide 18: Lecture Outline
	Slide 19: Assignment in predicate
	Slide 20: Macro Pollution
	Slide 21: Separating Initialization from USE
	Slide 22: Separating Initialization from USE
	Slide 23: Line Continuation Weirdness
	Slide 24: Scoped Initialization
	Slide 25: Namespacing (Good)
	Slide 26: Heuristic tools for an imperfect World
	Slide 27: Recall: Security v Usability

