
EXERCISE #10

1

LLVM REGISTER OPERATION REVIEWS

Write your name and answer the following on a piece of paper

• Write out the corresponding LLVM bitcode program for the following:

int main(int argc){

 int i = 0;

 while (i < argc){

 i = i + 1;

 }

 return i;

}

ADMINISTRIVIA
AND
ANNOUNCEMENTS

We have to talk about cheating

LLVM BITCODE MEMORY
EECS 677: Software Security Evaluation

Drew Davidson

CLASS PROGRESS

WE’RE GEARING UP TO BUILD OUR OWN
PROGRAM ANALYSES

- WE HAVE THE THEORY FOR DATAFLOW

- WORKING THROUGH A GOOD
PROGRAM REPRESENTATION

4

5

LAST TIME: LLVM BITCODE & REGISTERS
REVIEW: LAST LECTURE

LOW-LEVEL LANGUAGE

− Targets an abstract machine

− Uses a system of (infinite) named

registers to perform computation

− Registers must be in SSA format

LECTURE OUTLINE

• LLVM Memory

• Load/Store

• The dreaded GEP

7

LLVM MEMORY
LLVM BITCODE

ENCODES THE CONCEPTS OF LOCAL AND GLOBAL
MEMORY

Local memory: within a function activation

Global memory: static in the data section

Notably absent: heap memory With infinite registers,

Why have local memory?

int main(){

 int a;

 int * p;

 p = &a;

}

Because we might take the address of a local

8

LLVM MEMORY: ALLOCATION
LLVM BITCODE

ALLOCATING GLOBAL MEMORY

@glb1 = global i32 2, align 4

@cnst2 = constant i32 3, align 4

ALLOCATING LOCAL MEMORY

%reg = alloca i32, align 4

9

LLVM MEMORY: LOAD AND STORE
LLVM BITCODE

LOAD

<dstOpd> = load <dstType>, <srcType> <srcOpd>, align <align>

%reg = load i32, i32* %var1ptr, align 4

STORE

store <srcType> <srcOpd>, <dstType> <dstOpd>, align <align>

store i32 1 , i32* %var1ptr, align 4

10

LLVM MEMORY: GLOBAL MEMORY EXAMPLE
LLVM BITCODE

11

LLVM MEMORY: LOOK, NO SSA!
LLVM BITCODE

The VALUE OF the register doesn’t change
The VALUE AT the register is what changes!

12

LLVM MEMORY: LOOK, NO SSA!
LLVM BITCODE

34000000

%valptr: 0x4080

Address

0x4080

Address

0x4081

Address

0x4080

Address

0x4081

13

LLVM MEMORY: AGGREGATE TYPES
LLVM BITCODE

%Point = type { i32, i32 }

RECALL THAT BITCODE IS A TYPED LANGUAGE

%ptr = alloca %Point, align 4

Declare an aggregate type (think struct)

Allocate an aggregate type

%arrayptr = alloca [8 x i32], align 16

Allocate an array

14

LLVM MEMORY: ACCESSING AGGREGATE MEMORY
LLVM BITCODE

AT THIS POINT, WE NEED TO DISCUSS HOW TO READ AN ARRAY INDEX OR FIELD

There is a powerful, but somewhat complicated instruction to do it, called getelementptr (GEP)

GEP never actually reads memory, it just computes what the offset from a base location would be

LECTURE OUTLINE

• LLVM Memory

• Load/Store

• The dreaded GEP

16

GETELEMENTPTR
LLVM BITCODE

HERE IS THE BASIC FORMAT OF A GEP

<result> = getelementptr <ty>, ptr <ptrval>{, [inrange] <ty> <idx>}*

The first argument is always a type used as the basis for the calculations. The second argument is always a

pointer or a vector of pointers, and is the base address to start from. The remaining arguments are indices that

indicate which of the elements of the aggregate object are indexed. The interpretation of each index is

dependent on the type being indexed into. The first index always indexes the pointer value given as the second

argument, the second index indexes a value of the type pointed to (not necessarily the value directly pointed

to, since the first index can be non-zero), etc. The first type indexed into must be a pointer value, subsequent

types can be arrays, vectors, and structs. Note that subsequent types being indexed into can never be pointers,

since that would require loading the pointer before continuing calculation.

HERE IS A SNIPPET OF THE DOCUMENTATION OF THE SYNTAX:

17

GETELEMENTPTR
LLVM BITCODE

LET ME (MAYBE?) SIMPLIFY THIS A BIT WITH A CONSTRAINED VERSION OF GEP

<result> = getelementptr <tyres>, <tysrcobj> <srcobj>, <ptrtype> <siblingidx>, [<ptrtype> <fieldidx>]+

HERE IS MY EXPLANATION OF THIS VERSION OF GEP:

Get a pointer of type <tyres> by…

- starting from the base address srcobj

- jumping over siblingidx siblings

- jumping over fieldidx children

18

GETELEMENTPTR: PICTORIALLY
LLVM BITCODE

Can be helpful to walk through memory as a tree

n1

n2 n3

a0 b0 c0

%t1 = type { A, B, C }

%t2 = type [2 x %t1]

@ptr_n1 = global %t2 [{ a0, b0, c0 }, { a1, b1, c1}]

a1 b1 c1

ptr_n1

getelementptr %t2* ptr_n1, i64 0, i64 0

getelementptr %t2* ptr_n2, i64 1, i64 1

ptr_n2 =

ptr_b1 =

WRAP-UP

NEXT TIME

A COUPLE MORE BITCODE FEATURES

DESCRIBE THE FIRST PROJECT

20

	Slide 1: Exercise #10
	Slide 2: Administrivia and Announcements
	Slide 3: LLVM BITCODE Memory
	Slide 4: Class Progress
	Slide 5: Last Time: LLVM BitCode & Registers
	Slide 6: Lecture Outline
	Slide 7: LLVM MEMORY
	Slide 8: LLVM MEMORY: Allocation
	Slide 9: LLVM MEMORY: Load and STORE
	Slide 10: LLVM MEMORY: Global Memory Example
	Slide 11: LLVM MEMORY: LoOK, NO SSA!
	Slide 12: LLVM MEMORY: LoOK, NO SSA!
	Slide 13: LLVM MEMORY: Aggregate Types
	Slide 14: LLVM MEMORY: Accessing Aggregate memory
	Slide 15: Lecture Outline
	Slide 16: GetElementPtr
	Slide 17: GetElementPtr
	Slide 18: GetElementPtr: Pictorially
	Slide 19: Wrap-up
	Slide 20: Next Time

