
EXERCISE #3

1

ABSTRACTING CODE REVIEW

Write your name and answer the following on a piece of paper

• Draw the Control Flow Graph for the following code

void v(int a){

 if (a < 2){

 while (c < 3){

 c++;

 }

 if (b > 3){

 c = 12;

 }

 }

 return;

}

ADMINISTRIVIA
AND
ANNOUNCEMENTS

CLASS PROGRESS

EXPLORING STATIC ANALYSIS

- FINISHED ENOUGH INTUITION THAT
WE CAN PERFORM A BASIC ANALYSIS

- TIME TO EXPLORE OUR ANALYSIS
TARGET FORMAT

3

LLVM BITCODE
EECS 677: Software Security Evaluation

Drew Davidson

5

LAST TIME: ABSTRACT INTERPRETATION
REVIEW: LAST LECTURE

PRECISION / EFFICIENCY TRADEOFF

- Overapproximate the domain

- Rebuild the transfer functions
pos neg

num

zero

∅

6

LAST TIME: LLVM
REVIEW: LAST LECTURE

A SET OF PROGRAM MANIPULATION TOOLS BUILT AROUND A “MID-LEVEL”
ABSTRACT INSTRUCTION SET

Common

Middle-end
Front-end1

Front-end2

Front-endn

Back-end1

Back-end2

Back-endm

C

Haskell

Ruby

…

Analysis…

Common

IR

Optimization

Common

IR

X64

MIPS

WASM

- Called an intermediate representation (IR) because it sits between source code and executable

- High level enough to avoid architecture lock-in

- Low level enough to optimize / provide explicit operational details

LECTURE OUTLINE

• LLVM Bitcode Format

• Very simple examples

• SSA Format

8

LLVM’S “UNIVERSAL IR”
LLVM BITCODE

BIT-CODE LANGUAGE DESIGN GOALS

Relatively generic

Relatively easy to analyze

A COMPILER’S REPRESENTATION

An in-memory compiler IR

An on-disk program representation

A human readable assembly language

9

BITCODE STRUCTURE
LLVM BITCODE

NESTED STRUCTURE

Modules

Functions

Global variables (globals)

modules

• functions

• globals

• locals

• instructions

• registers

Local variables

Instructions

Registers

Invokable execution units

Regions of statically-allocated memory

Regions of dynamically-allocated memory

Data transformers

Value holders

Individual translation unit (can be a whole program)

10

AN ABSTRACT COMPUTER
LLVM BITCODE

NO REAL COMPUTER RUNS BITCODE NATIVELY*

Abstract representation of memory

Highly-explicit instructions

*Without some additional translation software

11

LLVM’S ABSTRACT MEMORY
LLVM BITCODE

NAMED MEMORY OBJECTS

No explicit layout between objects

Highly-explicit instructions

SIZED FIELD WITHIN THE OBJECT

Infinite number of registers

ABSTRACT REGISTERS

12

EXAMPLE-DRIVEN LEARNING
LLVM BITCODE

Before we get too lost in the details, let’s explore bit-code with an example

LECTURE OUTLINE

• LLVM Bitcode Format

• Very simple examples

• SSA Format

14

AN EXAMPLE PROGRAM
LLVM BITCODE

Source code Basically-equivalent bit-code

@ PRECEDES A FUNCTION NAME

TYPES EXPLICITLY DENOTE THEIR BIT SIZE (I32)

OPERANDS ARE PREFIXED BY A TYPE ANNOTATION ret i32 7

15

AN EXAMPLE PROGRAM - MATH
LLVM BITCODE

Source code Basically-equivalent bit-code

% precedes a register name

No complex operands (the operand of the return cannot be the add)

16

AN EXAMPLE PROGRAM - JUMPS
LLVM BITCODE

Source code Basically-equivalent bit-code

All blocks must end in a terminator instruction

17

SIMPLE INSTRUCTION SET
LLVM BITCODE – VERY SIMPLE EXAMPLES

MATH

The add instruction for addition

The mul instruction for multiplication

The sub instruction for subtraction

The div instruction for division

CONTROL FLOW

The br instruction for branching

• Predicate + multiple targets for

conditional branch

• No predicate + 1 target for

unconditional branch

COMPARISON

The icmp <kind> for integer comparison

Where kind is…

eq: equal

ne: not equal

ugt: unsigned greater than

uge: unsigned greater or equal

ult: unsigned less than

ule: unsigned less or equal

sgt: signed greater than

sge: signed greater or equal

slt: signed less than

sle: signed less or equal

18

RUNNING BITCODE PROGRAMS
LLVM BITCODE – VERY SIMPLE EXAMPLES

LLI – A RUNTIME ENVIRONMENT FOR BIT-CODE PROGRAMS!

19

RUNNING BITCODE PROGRAMS
LLVM BITCODE – VERY SIMPLE EXAMPLES

LLI – A RUNTIME ENVIRONMENT FOR BIT-CODE PROGRAMS!

20

SECTION SUMMARY
LLVM BITCODE – VERY SIMPLE EXAMPLES

WE CAN WRITE SIMPLE PROGRAMS USING THE INSTRUCTIONS GIVEN

WE CAN WRITE RUN SIMPLE PROGRAMS USING LLI

LECTURE OUTLINE

• LLVM Bitcode Format

• Very simple examples

• Format Constraints - SSA

22

AN INCORRECT PROGRAM

THIS PROGRAM IS INVALID!

THE REGISTER %REG IS NOT

IS NOT IN SSA FORM

LLVM BITCODE –FORMAT CONSTRAINTS: SSA

23

SSA FORM

IN STATIC SINGLE ASSIGNMENT FORM, A VARIABLE (HERE, REGISTER) MAY BE
ASSIGNED IN AT MOST ONE PROGRAM POINT

LLVM BITCODE –FORMAT CONSTRAINTS: SSA

24

SSA FORM

IN STATIC SINGLE ASSIGNMENT FORM, A VARIABLE (HERE, REGISTER) MAY BE
ASSIGNED IN AT MOST ONE PROGRAM POINT

Is this program in SSA form?

Is this program in SSA form?

LLVM BITCODE –FORMAT CONSTRAINTS: SSA

Yes!

No!

Remember static means “before runtime”

 only one static assignment

(many dynamic assignments)

var is assigned at two program points

25

PHI FUNCTIONS
LLVM BITCODE –FORMAT CONSTRAINTS: SSA

THE CONCEPTS WE HAVE SO FAR PREVENT SOME BASIC PROGRAMS FROM BEING
WRITTEN

Fortunately, there is an instruction for

exactly these cases:

%res = phi <type> [val1, bbl1], [val2, bbl2], … [valn, bbln]

Set %res to vali if the block was entered from bbli

SECTION SUMMARY
26

STATIC ANALYSIS

LLVM CONSTRAINS HOW VALUES CAN BE SET

ONE SOLUTION IS TO USE PHI INSTRUCTIONS
TO UNIFY DISPARATE VALUES

WRAP-UP

HOMEWORK 1

WRITE AN LLVM PROGRAM THAT
ITERATIVELY COMPUTES THE KTH
FIBONACCI NUMBER WHERE K IS THE
ARG COUNT TO THE PROGRAM

28

DUE MONEY, 9/4

NEXT TIME

LOOK AT SOME MORE COMPLEX LLVM
EXAMPLES

START LOOKING AT MANIPULATING
MEMORY:

- POINTERS / REF+DEREF

- STRUCTURES / ARRAYS

29

	Slide 1: Exercise #3
	Slide 2: Administrivia and Announcements
	Slide 3: Class Progress
	Slide 4: LLVM BITCODE
	Slide 5: Last Time: Abstract Interpretation
	Slide 6: Last Time: LLVM
	Slide 7: Lecture Outline
	Slide 8: LLVM’s “Universal IR”
	Slide 9: Bitcode Structure
	Slide 10: An Abstract Computer
	Slide 11: LLVM’S Abstract Memory
	Slide 12: example-Driven Learning
	Slide 13: Lecture Outline
	Slide 14: An Example Program
	Slide 15: An Example Program - Math
	Slide 16: An Example Program - Jumps
	Slide 17: simple Instruction Set
	Slide 18: Running BITCODE Programs
	Slide 19: Running BITCODE Programs
	Slide 20: Section Summary
	Slide 21: Lecture Outline
	Slide 22: an Incorrect Program
	Slide 23: SSA FOrm
	Slide 24: SSA FOrm
	Slide 25: PHI Functions
	Slide 26: Section Summary
	Slide 27: Wrap-up
	Slide 28: Homework 1
	Slide 29: Next Time

