
EXERCISE #16
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SIDE CHANNEL REVIEW

Write your name and answer the following on a piece of paper

What is an advantage over an inline reference monitor over a reference monitor built 

into the OS? What about vice versa?
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CLASS PROGRESS

DESCRIBING SOME CLASSES OF ATTACKS 
AND DEFENSES
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LAST TIME: REFERENCE MONITORS
REVIEW: LAST LECTURE

LIVE TRACKING OF ADHERENCE TO A SAFETY POLICY

– Kernelized reference monitor: Add policy enforcement in 

the underlying trusted computing base, policies strictly 

over system events

– Wrapper reference monitor: Add a new enforcement 

layer that mediates system actions

– Inline reference monitor: add probes (and potentially 

enforcement) into the body of the program itself



OVERVIEW

PREVENTING BAD STUFF FROM 
HAPPENING IN A PROGRAM
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HOW DO “BAD” PROGRAMS RUN?
A HISTORY OF SUBVERSION

REACTIVE CONCERNS

– Social engineering

– “Flaws” in system installation policies

PROACTIVE CONCERNS

– The program accidentally does damage

– The program contains a vulnerability
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HOW DO “BAD” PROGRAMS RUN?
A HISTORY OF SUBVERSION

REACTIVE CONCERNS

– Social engineering

– “Flaws” in system installation policies

PROACTIVE CONCERNS

– The program accidentally does damage

– The program contains a vulnerability

We’re concerned about all these threats

Let’s focus on this one

for now



LECTURE OUTLINE

• A history of computers

• A history of subversion

• Defenses
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DATA AND CODE
A HISTORY OF COMPUTING

CONSIDER THE HISTORY OF COMPUTATION

The earliest devices recognized as computers were built to 

perform some specific type of computation
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DATA AND CODE
A HISTORY OF COMPUTING

CONSIDER THE HISTORY OF COMPUTATION

The earliest devices recognized as computers were built to 

perform some specific type of computation

ALGORITHMIC PURPOSE SPECIFIED BY HARDWARE

Consider the theory analogy: a Turing Machine to compute 

a Fibonnaci Sequence

- Fibonnaci computation encoded into the state machine

- Input number encoded into the tape at start

- Output number encoded onto the tape at halt
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DATA AND CODE
A HISTORY OF COMPUTING

A MAJOR PARADIGM SHIFT: THE UNIVERSAL 
COMPUTATION MACHINE

The hardware contains generally-useful instructions

A particular algorithm is encoded in terms of those instructions

THE THEORY: THE UNIVERSAL TURING MACHINE

Consider the theory analogy: a Turing Machine that computes 

any function

- “Instruction set” encoded into the state machine

- Desired algorithm encoded into the tape at start

- Input to the algorithm encoded into the tape at start as well

- Output number encoded onto the tape at halt
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DATA AND CODE
A HISTORY OF COMPUTING

A MAJOR PARADIGM SHIFT: THE UNIVERSAL 
COMPUTATION MACHINE

The hardware contains generally-useful instructions

A particular algorithm is encoded in terms of those instructions

THE THEORY: THE UNIVERSAL TURING MACHINE

Consider the theory analogy: a Turing Machine that computes 

any function

- “Instruction set” encoded into the state machine

- Desired algorithm encoded into the tape at start

- Input to the algorithm encoded into the tape at start as well

- Output number encoded onto the tape at halt

Operations as symbols

Symbols as numbers

Numbers as stored voltage levels
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DATA AND CODE
A HISTORY OF COMPUTING

Operations as symbols

Symbols as numbers

Numbers as stored voltage levels

Code is data
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DATA AND CODE
A HISTORY OF COMPUTING

THE VON NEUMANN ARCHITECTURE

Another big idea: Code and data share memory

Code is data
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DATA AND CODE
A HISTORY OF COMPUTING

THE VON NEUMANN ARCHITECTURE

Another big idea: Code and data share memory

Good 

news!
Programs can write code just 

like any other form of data

Code is data

Bad 

news!



LECTURE OUTLINE

• A history of computers

• A history of subversion

• Defenses
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BUFFER OVERFLOWS
A HISTORY OF SUBVERSION

A SIMPLIFIED VIEW OF PROGRAM MEMORY

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0
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CODE INJECTION
A HISTORY OF SUBVERSION

TREATING USER DATA AS CODE

Time to panic? Not so fast

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0
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DEFEATING CODE INJECTION: W⊗X
A HISTORY OF SUBVERSION

SEPARATE ALL USER DATA FROM CODE

New rule for EVERY byte of process memory: 

A byte can be writeable OR executable but never both

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0
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RETURN-ORIENTED PROGRAMMING
A HISTORY OF SUBVERSION

RECALL THAT CODE HAS AN UNDERLYING BINARY (NUMERIC) REPRESENTATION

Time to panic?

Adversary still controls (at least) one control transfer

Write into an address

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0

Maybe not…
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ROP CHALLENGES
A HISTORY OF SUBVERSION

THE PRACTICALITY OF THIS ATTACK MAY 
SEEM LIMITED

Are (sub)sequences present in process code to do the attack? 

Are the (sub)sequences placed in predictable positions? 
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RETURN INTO LIBC
A HISTORY OF SUBVERSION

RECALL THAT CODE HAS AN UNDERLYING BINARY (NUMERIC) REPRESENTATION

Time to panic?

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0
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(yes, time to panic)



LECTURE OUTLINE

• A history of computers

• A history of subversion

• Defenses
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STACK CANARIES
A HISTORY OF SUBVERSION
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STACK CANARIES
A HISTORY OF SUBVERSION

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0
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ASLR
A HISTORY OF SUBVERSION
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ASLR
A HISTORY OF SUBVERSION

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0
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CFI
A HISTORY OF SUBVERSION



WRAP-UP
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