EXERCISE #16

SIDE CHANNEL REVIEW
Write your name and answer the following on a piece of paper

What is an advantage over an inline reference monitor over a reference monitor built
iInto the OS? What about vice versa?



ADMINISTRIVIA
AND
ANNOUNCEMENTS



'A}:

=

ATTACKS

EECS 677: Software Security Evaluation

Drew Davidson



CLASS PROGRESS

DESCRIBING SOME CLASSES OF ATTACKS
AND DEFENSES



LAST TIME: REFERENCE MONITORS

REVIEW: LAST LECTURE

LIVE TRACKING OF ADHERENCE TO A SAFETY POLICY

— Kernelized reference monitor: Add policy enforcement in
the underlying trusted computing base, policies strictly
over system events

— Wrapper reference monitor: Add a new enforcement
layer that mediates system actions

— Inline reference monitor: add probes (and potentially
enforcement) into the body of the program itself



OVERVIEW

PREVENTING BAD STUFF FROM
HAPPENING IN A PROGRAM



HOW DO “BAD” PROGRAMS RUN?

A HISTORY OF SUBVERSION

REACTIVE CONCERNS

— Social engineering
— “Flaws” in system installation policies

PROACTIVE CONCERNS

— The program accidentally does damage
— The program contains a vulnerability



HOW DO “BAD” PROGRAMS RUN?

A HISTORY OF SUBVERSION

REACTIVE CONCERNS

— Social engineering
— “Flaws” in system installation policies

~— We’re concerned about all these threats

PROACTIVE CONCERNS

— The program accidentally does damage

— The program contains a vulnerobility2

Let’s focus on this one
for now
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DATA AND CODE

A HISTORY OF COMPUTING

CONSIDER THE HISTORY OF COMPUTATION

The earliest devices recognized as computers were built to

—

perform some specific type of computation
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DATA AND CODE

A HISTORY OF COMPUTING

CONSIDER THE HISTORY OF COMPUTATION

The earliest devices recognized as computers were built to
perform some specific type of computation

ALGORITHMIC PURPOSE SPECIFIED BY HARDWARE

Consider the theory analogy: a Turing Machine to compute
a Fibonnaci Sequence

- Fibonnaci computation encoded into the state machine

- Input number encoded into the tape at start

- Output number encoded onto the tape at halt
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DATA AND CODE

A HISTORY OF COMPUTING

A MAJOR PARADIGM SHIFT: THE UNIVERSAL
COMPUTATION MACHINE
The hardware contains generally-useful instructions

A particular algorithm is encoded in terms of those instructions
THE THEORY: THE UNIVERSAL TURING MACHINE

Consider the theory analogy: a Turing Machine that computes
any function

- “Instruction set” encoded into the state machine

- Desired algorithm encoded into the tape at start

- Input to the algorithm encoded into the tape at start as well

- Output number encoded onto the tape at halt

12



DATA AND CODE

A HISTORY OF COMPUTING

A MAJOR PARADIGM SHIFT: THE UNIVERSAL Numbers as stored voltage levels
COMPUTATION MACHINE >

The hardware contains generally-useful instructions
A particular algorithm is encoded in terms of those instructions Symbols as numbers

THE THEORY: THE UNIVERSAL TURING MACHINE

Consider the theory analogy: a Turing Machine that computes Operations as symbols
any function

- “Instruction set” encoded into the state machine

- Desired algorithm encoded into the tape at start
- Input to the algorithm encoded into the tape at start as well

- Output number encoded onto the tape at halt
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DATA AND CODE

A HISTORY OF COMPUTING

w T v

Numbers as stored voltage levels

Symbols as numbers

i

Operations as symbols

Code is data
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DATA AND CODE

A HISTORY OF COMPUTING

THE VON NEUMANN ARCHITECTURE

Another big idea: Code and data share memory
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Code is data
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DATA AND CODE

A HISTORY OF COMPUTING

THE VON NEUMANN ARCHITECTURE

Another big idea: Code and data share memory
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Programs can write code just
like any other form of data

Code is data
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BUFFER OVERFLOWS

A HISTORY OF SUBVERSION

A SIMPLIFIED VIEW OF PROGRAM MEMORY

Program instructions (binary sequences)

Program data & metad
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CODE INJECTION

A HISTORY OF SUBVERSION

TREATING USER DATA AS CODE
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Time to panic? Not so fast
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DEFEATING CODE INJECTION: WX

A HISTORY OF SUBVERSION

SEPARATE ALL USER DATA FROM CODE

New rule for EVERY byte of process memory:

A byte can be writeable OR executable but never both

Program instructions (binary sequences) Program data & metadyta/_\ User data
N
2 % £
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RETURN-ORIENTED PROGRAMMING

A HISTORY OF SUBVERSION

RECALL THAT CODE HAS AN UNDERLYING BINARY (NUI\/IERIC) REPRESENTATION

Adversary still controls (at least) one control transfer

Write into an address
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Time to panic? Maybe not...
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ROP CHALLENGES

A HISTORY OF SUBVERSION

THE PRACTICALITY OF THIS ATTACK MAY
SEEM LIMITED

Are (sub)sequences present in process code to do the attack?

Are the (sub)sequences placed in predictable positions?

22

The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)

2014 [EEE Symposium on Security and Privacy

Hacking Blind

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Maziéres, Dan Boneh

Stanford University

Abstract—We show that it is possible to write remote stack
buffer overflow exploits without possessing a copy of the target
binary or source code, ugainsi services thal restard after a crash.
This makes It possible to hack proprietary closed-binary services,
or open-source servers manually compiled and installed from
source where the binary remains unknown to the attacker. Tra-
ditional lechniques are ususlly paired against a particular binary
and distribution where the hacker knows the location of wseful
gadgets for Return Orlented Programming (ROP). Our Elind
ROP (BROP) atack instead remotely finds enough ROP gadgets
o perform a wrile system call and transfers (he vulnerable
binary over the network, after which an exploit can be completed
using known technigues. This Is accomplished by leaking a
single bil of information based on whether a process crashed
or nol when given a parlicular inpul siring. BROP requires a
stack vulnerability and a service that restarts after a crash. We
implemented Braille, a fully automated explolt that yielded a shell
in under 4,000 requests (20 minutes) against a contemporary
nginx vulnerability, yaSSL + MySOL, and a oy proprielary
server wrillen by a colleague. The altack works against modern
64-bit Linux with address space layout randomization (ASLR),
no-execute page protection (NX) and stack canaries.

I INTRODUCTION

Attackers have been highly successful in building exploits
with varying degrees of information on the target. Open-source
sollware is mos! within resch since allackers can audil the code
o find vuinerahilitics. Hacking closed-source software is also
possible for more motivated aftackers through the use of fuzz
lesling and reverse engineering. In an eflort o understand an
attacker’s limits, we pose the following question: is it passible
Sor attackers to extend their reach and create exploits for
prwnemq services when neither the source nor bmar) code
is available? AU Tirst sight this goal may seem

One advantage attackers often have is thal many servers
restart their worker processes afler a crash for robusiness, No-
table examples include Apache, nginx, Samba and OpenSSH.
Wrapper scripts like mysqld safe.sh or daemons like
sysLemd provide this Tunclionality even if it is not baked into
the application. 1.oad halancers are also increasingly commaon
and often distribule connections (o large numbers of identically
configured hosls execuling identical program binaries. Thus,
there are many sitations where an attacker has potentially
infinile tries (until detected) o build an exploil.

We present a new allack, Blind Return Oriented Program
ming (BROF), that takes advantage of these situations to build
exploits for proprietary services for which both the binary
and source are unknown. ‘The BROP allack assumes a server

with a stack v hility and one thal is restaried
after a crash. The attack works against modem G4-bit Linux
with ASLE (Address Space Layoul Randomization), non-
executable (NX) memory, and stack canaries enabled. While
this covers a large number of servers, we can nol currently
target Windows systems because we have yet o adapt the
attack to the Windows ABI. The attack is enabled by two new
technigues:

1) Generalized stack reading: this peneralizes 3 known
techmigue, used to leak canaries, to also leak saved
return addresses in order 1o defeat ASLR on 64-bit
even when Posilion Independent Executables (P1LE)
are used.

2)  Blind ROP: this technique remotely locates ROP
padgets.

share the idea of using a single stack

because ioday's exploits rely on having a copy of (he ilane(
binary for use in Return Oriented Programming (ROP) [1].
ROP is necessary hecause, on modern systems, non-executable
(NX) memory prolection has larpely prevented code injection
attacks.

To answer this question we start with the simplest possible
vulnerability: stack buffer overfows. Unfortunately these are
still present today in popular software (e.g., nginx CVE-2013
2028 [2]). One can only speculale thal bugs such as these
go wnnoticed in proprietary software, where the source (and
binary) has not been under the heavy scruliny of the public
and security specialists. However, it is certainty possibie for
an attacker 0 use fuzz testing to find potential bugs through
known or reverse engineered service interfaces. Alternatively,
attackers can target known vulnerabilities in popular
source libraries (e.g, SSL or a PNG parser) that may be used
by proprietary services. The challenge is developing a method-
ology for exploiting these vulnerabilities when information
aboul the target binary is limiled.

& 2014, Andrea Bittau. Under license to [EEE.
DOI 10.1109/5P.2014.22
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Both

vulnerahility to leak information based on whether a server
process crashes or nol. The stack reading technique overwriles
the stack byte-by-byte with possible guess values, until the
correct one is found and the server does not crash, effectively
reading (by overwriting) the stack. The Blind ROP attack
remoiely finds enongh gadgets i perform the write sysiem
call, after which the server’s binary can be transferred from
memory Lo Lhe altacker's sockel. Al this poinl, canaries, ASLR
and NX have been defeated and the exploit can proceed using
known technigues.

The BROP attack enables robust, general-purpose exploits
Tor (hres new scenarios:

1) Hacking proprietary closed-binary services. One may
notice a crash when using a remote service or dis-
cover one through remote Tuzz testing,

2)  Hacking a vulnerab: in an open-source library
thought 0 be use proprietary closed-hinary
service. A popular S5L library for example may have
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I has discovered o vulnerability
s to exploit it. Exploitation
subwerts the program’s control
tions of his choice with its cre-
pocrability in Chis context is the
[1], though many other classes
feonsidered, such as buffer over-
3], integer overflows [34, 11, 4],
flities [25, 10]. In each case, the
oo tasks: he must find some way
trol Aow from its normal course,
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- smashing attacks, an attacker
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RETURN INTO LIBC

A HISTORY OF SUBVERSION

RECALL THAT CODE HAS AN UNDERLYING BINARY (NUI\/IERIC) REPRESENTATION

Program instructions (Hinary sequeftses) Program datg & metadata _Aser data
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Time to panic?
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STACK CANARIES

A HISTORY OF SUBVERSION




STACK CANARIES

A HISTORY OF SUBVERSION

Program instructions (binary sequences)

Program data & metadata

User data
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ASLR

A HISTORY OF SUBVERSION
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Program instructions (binary sequences)

ASLR

A HISTORY OF SUBVERSION

Program data & metadata

User data
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CFI

A HISTORY OF SUBVERSION
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