EXERCISE #16

SIDE CHANNEL REVIEW
Write your name and answer the following on a piece of paper

What is an advantage over an inline reference monitor over a reference monitor built
iInto the OS? What about vice versa?

ADMINISTRIVIA
AND
ANNOUNCEMENTS

'A}:

=

ATTACKS

EECS 677: Software Security Evaluation

Drew Davidson

CLASS PROGRESS

DESCRIBING SOME CLASSES OF ATTACKS
AND DEFENSES

LAST TIME: REFERENCE MONITORS

REVIEW: LAST LECTURE

LIVE TRACKING OF ADHERENCE TO A SAFETY POLICY

— Kernelized reference monitor: Add policy enforcement in
the underlying trusted computing base, policies strictly
over system events

— Wrapper reference monitor: Add a new enforcement
layer that mediates system actions

— Inline reference monitor: add probes (and potentially
enforcement) into the body of the program itself

OVERVIEW

PREVENTING BAD STUFF FROM
HAPPENING IN A PROGRAM

HOW DO “BAD” PROGRAMS RUN?

A HISTORY OF SUBVERSION

REACTIVE CONCERNS

— Social engineering
— “Flaws” in system installation policies

PROACTIVE CONCERNS

— The program accidentally does damage
— The program contains a vulnerability

HOW DO “BAD” PROGRAMS RUN?

A HISTORY OF SUBVERSION

REACTIVE CONCERNS

— Social engineering
— “Flaws” in system installation policies

~— We’re concerned about all these threats

PROACTIVE CONCERNS

— The program accidentally does damage

— The program contains a vulnerobility2

Let’s focus on this one
for now

LECTURE OUTLINE

* A history of computers
* A history of subversion

e Defenses

DATA AND CODE

A HISTORY OF COMPUTING

CONSIDER THE HISTORY OF COMPUTATION

The earliest devices recognized as computers were built to

—

perform some specific type of computation

e =
1 -
=gz | § 1
1 § *TEs —
I =

-0 AL ok ===
" = - E e 5']

=]]
-, -
o]

i

“

Eb

: -)
S =HEr R =R = W

..iij

i
—

= e e | e e [e e) e e [e ==
™ -] 3 LY [] - ol L [

-8

B |

£ mea
EV L W

—.\“l_—?— ?-=.IZ*T‘_§~._— -
12 JEil - = d = - =
P Tp— - p—"] Y]

Yo

wuym
..

DATA AND CODE

A HISTORY OF COMPUTING

CONSIDER THE HISTORY OF COMPUTATION

The earliest devices recognized as computers were built to
perform some specific type of computation

ALGORITHMIC PURPOSE SPECIFIED BY HARDWARE

Consider the theory analogy: a Turing Machine to compute
a Fibonnaci Sequence

- Fibonnaci computation encoded into the state machine

- Input number encoded into the tape at start

- Output number encoded onto the tape at halt

11

DATA AND CODE

A HISTORY OF COMPUTING

A MAJOR PARADIGM SHIFT: THE UNIVERSAL
COMPUTATION MACHINE
The hardware contains generally-useful instructions

A particular algorithm is encoded in terms of those instructions
THE THEORY: THE UNIVERSAL TURING MACHINE

Consider the theory analogy: a Turing Machine that computes
any function

- “Instruction set” encoded into the state machine

- Desired algorithm encoded into the tape at start

- Input to the algorithm encoded into the tape at start as well

- Output number encoded onto the tape at halt

12

DATA AND CODE

A HISTORY OF COMPUTING

A MAJOR PARADIGM SHIFT: THE UNIVERSAL Numbers as stored voltage levels
COMPUTATION MACHINE >

The hardware contains generally-useful instructions
A particular algorithm is encoded in terms of those instructions Symbols as numbers

THE THEORY: THE UNIVERSAL TURING MACHINE

Consider the theory analogy: a Turing Machine that computes Operations as symbols
any function

- “Instruction set” encoded into the state machine

- Desired algorithm encoded into the tape at start
- Input to the algorithm encoded into the tape at start as well

- Output number encoded onto the tape at halt

13

DATA AND CODE

A HISTORY OF COMPUTING

w T v

Numbers as stored voltage levels

Symbols as numbers

i

Operations as symbols

Code is data

14

DATA AND CODE

A HISTORY OF COMPUTING

THE VON NEUMANN ARCHITECTURE

Another big idea: Code and data share memory

a‘»"':_':—‘
oy

®
n}:E:
a8
- £

Code is data

15

DATA AND CODE

A HISTORY OF COMPUTING

THE VON NEUMANN ARCHITECTURE

Another big idea: Code and data share memory

s 17 AR e T

— =
A —
—_—
—
—_—
S—
—
C—
 e—
S
. K
-' ol
E
E 1

Programs can write code just
like any other form of data

Code is data

16

LECTURE OUTLINE

* A history of computers
* A history of subversion

e Defenses

BUFFER OVERFLOWS

A HISTORY OF SUBVERSION

A SIMPLIFIED VIEW OF PROGRAM MEMORY

Program instructions (binary sequences)

Program data & metad

f0

ef

/0

81

el

53

Oa

cO

Oe

£5

o/

6l

b4

b

01

o3

51

30

8d

do

03

cb

¢

45

/

A

J

(

?Q“’ﬂf/

RU

‘”&’(’(g

1N

X

0‘9'9)(Vm’

4baliRleel80

eb

3f

P alE

e —

‘m\+\,

viinC \

18

CODE INJECTION

A HISTORY OF SUBVERSION

TREATING USER DATA AS CODE

- M(/(’d‘q'-/ A\ UUC"’W”}& V(“’("L"/] q//y@_j‘
ba At ovetlsw

Vih_ €
N Cl"UrG e t’/<*~”)' F v ‘I’Lle/ QILL#:C‘V“
Program instructions (binary sequences) Prograpadd m ta User data
// / y \)

fOef7081e1539acoOef5b761b4fb01b3513o8@03@4}389}& 719586 £jfAba TbBYe 53 TRalE

ety “}ltu.:s

adlle “uﬂ'rj

?‘«(M»Jl/m‘(

v~ a
sﬁ\faﬂcmlg

Time to panic? Not so fast

19

DEFEATING CODE INJECTION: WX

A HISTORY OF SUBVERSION

SEPARATE ALL USER DATA FROM CODE

New rule for EVERY byte of process memory:

A byte can be writeable OR executable but never both

Program instructions (binary sequences) Program data & metadyta/_\ User data
N
2 % £
fOef7081el539acOOef5b761b4bej§b351308ddOO3cb4b fle 019/3 4 4%476e80e53f2af/0)

20

RETURN-ORIENTED PROGRAMMING

A HISTORY OF SUBVERSION

RECALL THAT CODE HAS AN UNDERLYING BINARY (NUI\/IERIC) REPRESENTATION

Adversary still controls (at least) one control transfer

Write into an address

ven 27 Y

Program insguctions (binary seduences) ’__.—-\Pro m data & m cy:iata/\ User data
N\)

2af0

Z Wy
fole£70ls 55{mﬁ[>elf5561b4fb E3513 3 69/3@6

o

Vi

vt C el |4)

Time to panic? Maybe not...

21

ROP CHALLENGES

A HISTORY OF SUBVERSION

THE PRACTICALITY OF THIS ATTACK MAY
SEEM LIMITED

Are (sub)sequences present in process code to do the attack?

Are the (sub)sequences placed in predictable positions?

22

The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)

2014 [EEE Symposium on Security and Privacy

Hacking Blind

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Maziéres, Dan Boneh

Stanford University

Abstract—We show that it is possible to write remote stack
buffer overflow exploits without possessing a copy of the target
binary or source code, ugainsi services thal restard after a crash.
This makes It possible to hack proprietary closed-binary services,
or open-source servers manually compiled and installed from
source where the binary remains unknown to the attacker. Tra-
ditional lechniques are ususlly paired against a particular binary
and distribution where the hacker knows the location of wseful
gadgets for Return Orlented Programming (ROP). Our Elind
ROP (BROP) atack instead remotely finds enough ROP gadgets
o perform a wrile system call and transfers (he vulnerable
binary over the network, after which an exploit can be completed
using known technigues. This Is accomplished by leaking a
single bil of information based on whether a process crashed
or nol when given a parlicular inpul siring. BROP requires a
stack vulnerability and a service that restarts after a crash. We
implemented Braille, a fully automated explolt that yielded a shell
in under 4,000 requests (20 minutes) against a contemporary
nginx vulnerability, yaSSL + MySOL, and a oy proprielary
server wrillen by a colleague. The altack works against modern
64-bit Linux with address space layout randomization (ASLR),
no-execute page protection (NX) and stack canaries.

I INTRODUCTION

Attackers have been highly successful in building exploits
with varying degrees of information on the target. Open-source
sollware is mos! within resch since allackers can audil the code
o find vuinerahilitics. Hacking closed-source software is also
possible for more motivated aftackers through the use of fuzz
lesling and reverse engineering. In an eflort o understand an
attacker’s limits, we pose the following question: is it passible
Sor attackers to extend their reach and create exploits for
prwnemq services when neither the source nor bmar) code
is available? AU Tirst sight this goal may seem

One advantage attackers often have is thal many servers
restart their worker processes afler a crash for robusiness, No-
table examples include Apache, nginx, Samba and OpenSSH.
Wrapper scripts like mysqld safe.sh or daemons like
sysLemd provide this Tunclionality even if it is not baked into
the application. 1.oad halancers are also increasingly commaon
and often distribule connections (o large numbers of identically
configured hosls execuling identical program binaries. Thus,
there are many sitations where an attacker has potentially
infinile tries (until detected) o build an exploil.

We present a new allack, Blind Return Oriented Program
ming (BROF), that takes advantage of these situations to build
exploits for proprietary services for which both the binary
and source are unknown. ‘The BROP allack assumes a server

with a stack v hility and one thal is restaried
after a crash. The attack works against modem G4-bit Linux
with ASLE (Address Space Layoul Randomization), non-
executable (NX) memory, and stack canaries enabled. While
this covers a large number of servers, we can nol currently
target Windows systems because we have yet o adapt the
attack to the Windows ABI. The attack is enabled by two new
technigues:

1) Generalized stack reading: this peneralizes 3 known
techmigue, used to leak canaries, to also leak saved
return addresses in order 1o defeat ASLR on 64-bit
even when Posilion Independent Executables (P1LE)
are used.

2) Blind ROP: this technique remotely locates ROP
padgets.

share the idea of using a single stack

because ioday's exploits rely on having a copy of (he ilane(
binary for use in Return Oriented Programming (ROP) [1].
ROP is necessary hecause, on modern systems, non-executable
(NX) memory prolection has larpely prevented code injection
attacks.

To answer this question we start with the simplest possible
vulnerability: stack buffer overfows. Unfortunately these are
still present today in popular software (e.g., nginx CVE-2013
2028 [2]). One can only speculale thal bugs such as these
go wnnoticed in proprietary software, where the source (and
binary) has not been under the heavy scruliny of the public
and security specialists. However, it is certainty possibie for
an attacker 0 use fuzz testing to find potential bugs through
known or reverse engineered service interfaces. Alternatively,
attackers can target known vulnerabilities in popular
source libraries (e.g, SSL or a PNG parser) that may be used
by proprietary services. The challenge is developing a method-
ology for exploiting these vulnerabilities when information
aboul the target binary is limiled.

& 2014, Andrea Bittau. Under license to [EEE.
DOI 10.1109/5P.2014.22

n7

Both

vulnerahility to leak information based on whether a server
process crashes or nol. The stack reading technique overwriles
the stack byte-by-byte with possible guess values, until the
correct one is found and the server does not crash, effectively
reading (by overwriting) the stack. The Blind ROP attack
remoiely finds enongh gadgets i perform the write sysiem
call, after which the server’s binary can be transferred from
memory Lo Lhe altacker's sockel. Al this poinl, canaries, ASLR
and NX have been defeated and the exploit can proceed using
known technigues.

The BROP attack enables robust, general-purpose exploits
Tor (hres new scenarios:

1) Hacking proprietary closed-binary services. One may
notice a crash when using a remote service or dis-
cover one through remote Tuzz testing,

2) Hacking a vulnerab: in an open-source library
thought 0 be use proprietary closed-hinary
service. A popular S5L library for example may have

X computer
ety

pe fimel in & specilic distrbuation
ure that, becanse of the proper-
b, in any sufficiently large body
= will feature sequences thal al
ilar gadgets. (This claim is our
hree major contributions:

t algorithm for analyring libe
1 sequences Lhal can be wsed in

pered from a particular version
b gadgels Lhal allow arbilrary
cing many lechniques thal lay
hat we call, facetiously, refurn-

jwe provide strong evidence for
late for how one might explore
fmine whether they provide fur-

e geveral smaller contributions.
ented shelleode and show how it
e a study of the provenance of
b oof libve woe study, and comnsider
uld be eliminated by compiler
onr attack technigques fit withi
nto-libe technigues.
tacks and Defenses
I has discovered o vulnerability
s to exploit it. Exploitation
subwerts the program’s control
tions of his choice with its cre-
pocrability in Chis context is the
[1], though many other classes
feonsidered, such as buffer over-
3], integer overflows [34, 11, 4],
flities [25, 10]. In each case, the
oo tasks: he must find some way
trol Aow from its normal course,
raan Lo ach in the manner of his
- smashing attacks, an attacker
overwriting a return address on
to eode of his choosing rather
pade the call. (Though eves
n b v, anch as frame pointer
letes the second task by injeci-
nge; Lhe modified return address

RETURN INTO LIBC

A HISTORY OF SUBVERSION

RECALL THAT CODE HAS AN UNDERLYING BINARY (NUI\/IERIC) REPRESENTATION

Program instructions (Hinary sequeftses) Program datg & metadata _Aser data
] /[o [
fOef7081e1539a“@Oef5b76§B4fb01b351308dd003cb bl893(e271I9Rabef34bald /be80eb3f2alf0
G
\\'\l C

Time to panic?

23

LECTURE OUTLINE

* A history of computers
* A history of subversion

e Defenses

STACK CANARIES

A HISTORY OF SUBVERSION

STACK CANARIES

A HISTORY OF SUBVERSION

Program instructions (binary sequences)

Program data & metadata

User data

fOefl7081lel539acO0elfS5b76lbidfb

01

o3

51

308dd0l0 3ldbld LAT1

95

ab

o f

34bald7l6e80

eb

3f

P a

f0

27

ASLR

A HISTORY OF SUBVERSION

28

Program instructions (binary sequences)

ASLR

A HISTORY OF SUBVERSION

Program data & metadata

User data

f0

ef

/0

81

el

53

Oa

cO

Oe

£5

o/

6l

b4

b

o3

51

30

8d

do

03

cb

4b

89

30

ez

71

95

ab

o f

34

ba

477ce

80

eb

3f

P a

f0

N

\(&7

29

CFI

A HISTORY OF SUBVERSION

	Slide 1: Exercise #16
	Slide 2: Administrivia and Announcements
	Slide 3: History of memory attacks
	Slide 4: Class Progress
	Slide 5: Last Time: Reference Monitors
	Slide 6: Overview
	Slide 7: How do “BAD” programs run?
	Slide 8: How do “BAD” programs run?
	Slide 9: Lecture Outline
	Slide 10: Data and Code
	Slide 11: Data and Code
	Slide 12: Data and Code
	Slide 13: Data and Code
	Slide 14: Data and Code
	Slide 15: Data and Code
	Slide 16: Data and Code
	Slide 17: Lecture Outline
	Slide 18: Buffer Overflows
	Slide 19: Code Injection
	Slide 20: Defeating Code Injection: Wcircled timesX
	Slide 21: Return-Oriented Programming
	Slide 22: ROP Challenges
	Slide 23: Return Into LIBC
	Slide 24
	Slide 25: Lecture Outline
	Slide 26: Stack Canaries
	Slide 27: Stack Canaries
	Slide 28: ASLR
	Slide 29: ASLR
	Slide 30: CFI
	Slide 31: Wrap-up

