
EXERCISE #16

1

SIDE CHANNEL REVIEW

Write your name and answer the following on a piece of paper

What is an advantage over an inline reference monitor over a reference monitor built

into the OS? What about vice versa?

ADMINISTRIVIA
AND
ANNOUNCEMENTS

HISTORY OF MEMORY
ATTACKS
EECS 677: Software Security Evaluation

Drew Davidson

CLASS PROGRESS

DESCRIBING SOME CLASSES OF ATTACKS
AND DEFENSES

4

5

LAST TIME: REFERENCE MONITORS
REVIEW: LAST LECTURE

LIVE TRACKING OF ADHERENCE TO A SAFETY POLICY

– Kernelized reference monitor: Add policy enforcement in

the underlying trusted computing base, policies strictly

over system events

– Wrapper reference monitor: Add a new enforcement

layer that mediates system actions

– Inline reference monitor: add probes (and potentially

enforcement) into the body of the program itself

OVERVIEW

PREVENTING BAD STUFF FROM
HAPPENING IN A PROGRAM

6

7

HOW DO “BAD” PROGRAMS RUN?
A HISTORY OF SUBVERSION

REACTIVE CONCERNS

– Social engineering

– “Flaws” in system installation policies

PROACTIVE CONCERNS

– The program accidentally does damage

– The program contains a vulnerability

8

HOW DO “BAD” PROGRAMS RUN?
A HISTORY OF SUBVERSION

REACTIVE CONCERNS

– Social engineering

– “Flaws” in system installation policies

PROACTIVE CONCERNS

– The program accidentally does damage

– The program contains a vulnerability

We’re concerned about all these threats

Let’s focus on this one

for now

LECTURE OUTLINE

• A history of computers

• A history of subversion

• Defenses

10

DATA AND CODE
A HISTORY OF COMPUTING

CONSIDER THE HISTORY OF COMPUTATION

The earliest devices recognized as computers were built to

perform some specific type of computation

11

DATA AND CODE
A HISTORY OF COMPUTING

CONSIDER THE HISTORY OF COMPUTATION

The earliest devices recognized as computers were built to

perform some specific type of computation

ALGORITHMIC PURPOSE SPECIFIED BY HARDWARE

Consider the theory analogy: a Turing Machine to compute

a Fibonnaci Sequence

- Fibonnaci computation encoded into the state machine

- Input number encoded into the tape at start

- Output number encoded onto the tape at halt

12

DATA AND CODE
A HISTORY OF COMPUTING

A MAJOR PARADIGM SHIFT: THE UNIVERSAL
COMPUTATION MACHINE

The hardware contains generally-useful instructions

A particular algorithm is encoded in terms of those instructions

THE THEORY: THE UNIVERSAL TURING MACHINE

Consider the theory analogy: a Turing Machine that computes

any function

- “Instruction set” encoded into the state machine

- Desired algorithm encoded into the tape at start

- Input to the algorithm encoded into the tape at start as well

- Output number encoded onto the tape at halt

13

DATA AND CODE
A HISTORY OF COMPUTING

A MAJOR PARADIGM SHIFT: THE UNIVERSAL
COMPUTATION MACHINE

The hardware contains generally-useful instructions

A particular algorithm is encoded in terms of those instructions

THE THEORY: THE UNIVERSAL TURING MACHINE

Consider the theory analogy: a Turing Machine that computes

any function

- “Instruction set” encoded into the state machine

- Desired algorithm encoded into the tape at start

- Input to the algorithm encoded into the tape at start as well

- Output number encoded onto the tape at halt

Operations as symbols

Symbols as numbers

Numbers as stored voltage levels

14

DATA AND CODE
A HISTORY OF COMPUTING

Operations as symbols

Symbols as numbers

Numbers as stored voltage levels

Code is data

15

DATA AND CODE
A HISTORY OF COMPUTING

THE VON NEUMANN ARCHITECTURE

Another big idea: Code and data share memory

Code is data

16

DATA AND CODE
A HISTORY OF COMPUTING

THE VON NEUMANN ARCHITECTURE

Another big idea: Code and data share memory

Good

news!
Programs can write code just

like any other form of data

Code is data

Bad

news!

LECTURE OUTLINE

• A history of computers

• A history of subversion

• Defenses

18

BUFFER OVERFLOWS
A HISTORY OF SUBVERSION

A SIMPLIFIED VIEW OF PROGRAM MEMORY

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0

19

CODE INJECTION
A HISTORY OF SUBVERSION

TREATING USER DATA AS CODE

Time to panic? Not so fast

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0

20

DEFEATING CODE INJECTION: W⊗X
A HISTORY OF SUBVERSION

SEPARATE ALL USER DATA FROM CODE

New rule for EVERY byte of process memory:

A byte can be writeable OR executable but never both

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0

21

RETURN-ORIENTED PROGRAMMING
A HISTORY OF SUBVERSION

RECALL THAT CODE HAS AN UNDERLYING BINARY (NUMERIC) REPRESENTATION

Time to panic?

Adversary still controls (at least) one control transfer

Write into an address

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0

Maybe not…

22

ROP CHALLENGES
A HISTORY OF SUBVERSION

THE PRACTICALITY OF THIS ATTACK MAY
SEEM LIMITED

Are (sub)sequences present in process code to do the attack?

Are the (sub)sequences placed in predictable positions?

23

RETURN INTO LIBC
A HISTORY OF SUBVERSION

RECALL THAT CODE HAS AN UNDERLYING BINARY (NUMERIC) REPRESENTATION

Time to panic?

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0

24

(yes, time to panic)

LECTURE OUTLINE

• A history of computers

• A history of subversion

• Defenses

26

STACK CANARIES
A HISTORY OF SUBVERSION

27

STACK CANARIES
A HISTORY OF SUBVERSION

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0

28

ASLR
A HISTORY OF SUBVERSION

29

ASLR
A HISTORY OF SUBVERSION

Program instructions (binary sequences) Program data & metadata User data

f0ef7081e1539ac00ef5b761b4fb01b351308dd003cb4b8930e27195a6ef34ba476e80e53f2af0

30

CFI
A HISTORY OF SUBVERSION

WRAP-UP

	Slide 1: Exercise #16
	Slide 2: Administrivia and Announcements
	Slide 3: History of memory attacks
	Slide 4: Class Progress
	Slide 5: Last Time: Reference Monitors
	Slide 6: Overview
	Slide 7: How do “BAD” programs run?
	Slide 8: How do “BAD” programs run?
	Slide 9: Lecture Outline
	Slide 10: Data and Code
	Slide 11: Data and Code
	Slide 12: Data and Code
	Slide 13: Data and Code
	Slide 14: Data and Code
	Slide 15: Data and Code
	Slide 16: Data and Code
	Slide 17: Lecture Outline
	Slide 18: Buffer Overflows
	Slide 19: Code Injection
	Slide 20: Defeating Code Injection: Wcircled timesX
	Slide 21: Return-Oriented Programming
	Slide 22: ROP Challenges
	Slide 23: Return Into LIBC
	Slide 24
	Slide 25: Lecture Outline
	Slide 26: Stack Canaries
	Slide 27: Stack Canaries
	Slide 28: ASLR
	Slide 29: ASLR
	Slide 30: CFI
	Slide 31: Wrap-up

