
EXERCISE #20

1

POINTS-TO ANALYSIS REVIEW

Write your name and answer the following on a piece of paper

Draw the exploded supergraph for the following program:

ADMINISTRIVIA
AND
ANNOUNCEMENTS

POINTS-TO ANALYSIS
EECS 677: Software Security Evaluation

Drew Davidson

CLASS PROGRESS

ANALYSIS UNDERLYING OUR
ENFORCEMENT NEEDS

4

5

LAST TIME: INTERPROCEDURAL ANALYSIS
REVIEW: LAST LECTURE

CONSIDER THE EFFECT OF MULTIPLE
FUNCTIONS

Simplistic

– Function overturn all global / aliased facts

Supergraph / Context String

– 1-CFA (use a call-chain of 1)

Summary Information

- Use GMOD and GREF to cut down on imprecision

6

LAST TIME: GMOD & GREF COMPUTATION
REVIEW: LAST LECTURE

GLOBALS ONLY
Step 1

Compute IMOD and IREF

Step 2

Build (simple) call graph

Step 3

Collapse Cycles

Step 4

Solve a fixpoint problem

Add a new exit node (and add an edge n → exit

for each node n with no outgoing edge.

A lattice element is a set of (global) variables.

The lattice meet is set union.

The "initial" dataflow fact for both GMOD and GREF (the

fact that holds at the exit node) is the empty set.

for all nodes n, the dataflow functions for n are:

GMOD: fn(S) = S U IMOD(n)

GREF: fn(S) = S U IREF(n)

7

LAST TIME: GMOD & GREF COMPUTATION
REVIEW: LAST LECTURE

GLOBALS, LOCALS & VALUE-PASSING

Step 1

New IREF: include locals

and formals

Step 2

Build call-site multigraph

Step 3

Collapse Cycles

Step 3

Solve a fixpoint problem

GREF will change, GMOD doesn’t need to change

GREF(n) = (U all GREF(s) s.t. s is a call site in n) U IREF(n)

GREF(s) = GREF(called node m) with all formals mapped

back to the corresponding actuals

Init all node GREF sets to their IREF sets

Init all call site GREF sets to empty

Put all nodes and call sites on a worklist

Iterate until the worklist is empty.

Each time a node n is removed from the worklist, its current GREF set

is computed. If that set doesn't match its previous value, then add all

call sites to n to the worklist (if not already there).

Similarly, each time a call site s is removed from the worklist, its

current GREF set is computed. If that set doesn't match its previous

value, then the node that contains s is added to the worklist (if not

already there).

8

LAST TIME: GMOD & GREF COMPUTATION
REVIEW: LAST LECTURE

GLOBALS, LOCALS & VALUE-PASSING

GREF will change, GMOD doesn’t need to change

Init all node GREF sets to their IREF sets

Init all call site GREF sets to empty

Put all nodes and call sites on a worklist

Iterate until the worklist is empty.

Each time a node n is removed from the worklist, its

current GREF set is computed. If that set doesn't

match its previous value, then add all call sites to n to

the worklist (if not present).

Each time a call site s is removed from the worklist,

its current GREF set is computed. If that set doesn't

match its previous value, then the node that

contains s is added to the worklist (if not present).

9

LAST TIME: GMOD & GREF COMPUTATION
REVIEW: LAST LECTURE

GLOBALS, LOCALS & VALUE-PASSING

GREF will change, GMOD doesn’t need to change

void main() {

S1: call a(v1)

}

void a(f1) {

S2: call b(v2, v3)

S3: call b(v4, v5)

}

void b(f2, f3) {

 print f3;

S4: call b(g1, g2)

}

node or

call site

GREF

set

main g2

a g2, v3, v5

b f3, g2

s1 g2

s2 v3, g2

s3 v5, g2

s4 g2

main

IREF = { }

s1

a

IREF = { }

s2 s3

b

IREF = {f3}

s4

Init all node GREF sets to their IREF sets

Init all call site GREF sets to empty

Put all nodes and call sites on a worklist

Iterate until the worklist is empty.

Each time a node n is removed from the worklist, its

current GREF set is computed. If that set doesn't

match its previous value, then add all call sites to n to

the worklist (if not present).

Each time a call site s is removed from the worklist,

its current GREF set is computed. If that set doesn't

match its previous value, then the node that

contains s is added to the worklist (if not present).

OVERVIEW

WE’VE SEEN THE NECESSITY OF MULTI-
FUNCTION ANALYSIS IN REAL-WORLD
PROGRAMS

TIME TO CONSIDER HOW IT IS DONE

10

11

BACK TO DATAFLOW
INTERPROCEDURAL ANALYSIS

What is the effect of
mystery on x’s taintedness?

What are the (possible)
values of a and gbl?

LECTURE OUTLINE

• May-point v Must-point

• Andersen’s Analysis

• Steensgard’s Analysis

13

POINTERS: LOVE TO HATE ‘EM
MAY-POINT AND MUST-POINT

14

“EASY” SOLUTION: DATAFLOW FOR MAY-POINT
MAY-POINT AND MUST-POINT

LECTURE OUTLINE

• May-point v Must-point

• Andersen’s Analysis

• Steensgard’s Analysis

16

SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS

p = &a;

q = p;

p = &b;

r = p;

Program

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

17

SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS

18

SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS

p = &a;

q = p;

p = &b;

r = p;

p ⊇ {a}

q ⊇ p

p ⊇ {b}

r ⊇ p

pts(p) = ∅
pts(q) = ∅
pts(r) = ∅
pts(a) = ∅
pts(b) = ∅

pts(p) = {a,b}

pts(q) = {a,b}

pts(r) = {a,b}

pts(a) = ∅
pts(b) = ∅

Initial FinalConstraintsProgram

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

19

ANOTHER EXAMPLE
ANDERSEN’S ANALYSIS

p ⊇ {a}

q ⊇ {b}

*p ⊇ q

r ⊇ {c}

s ⊇ p

t ⊇ *p

*s ⊇ r

Initial FinalConstraintsProgram

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

p = &a

q = &b

*p = q;

r = &c;

s = p;

t = *p;

*s = r;

pts(p) = { a }

pts(q) = { b }

pts(r) = { c }

pts(s) = ∅
pts(t) = ∅

pts(a) = ∅
pts(b) = ∅
pts(c) = ∅

pts(p) = { a }

pts(q) = { b }

pts(r) = { c }

pts(s) = { a }

pts(t) = { b, c }

pts(a) = { b, c }

pts(b) = ∅
pts(c) = ∅

20

SOLVING CONSTRAINTS
ANDERSEN’S ANALYSIS

Graph closure on the subset relation

21

OVERHEAD
ANDERSEN’S ANALYSIS

WORST CASE: CUBIC TIME

That’s not great

OPTIMIZATION: CYCLE ELIMINATION

Detect and collapse SCCs in the points-to relation

LECTURE OUTLINE

• May-point v Must-point

• Andersen’s Analysis

• Steensgard’s Analysis

23

AN ALTERNATIVE APPROACH
STEENSGARD’S ANALYSIS

AIM FOR NEAR-LINEAR-TIME POINTS-TO ANALYSIS

Going to require us to reduce our search-space somewhat

INTUITION: EQUALITY CONSTRAINTS

Do away with the notion of subsets

24

EQUALITY CONSTRAINTS
STEENSGARD’S ANALYSIS

25

EQUALITY CONSTRAINTS
STEENSGARD’S ANALYSIS

a,b,cp,qm r

a,bpm r cq

a,bpm r

a,bpm

a,bp

ap

p = &a

p = &b

m = &p

r = *m

q = &c

m = &q

26

EQUALITY CONSTRAINTS
STEENSGARD’S ANALYSIS

Andersen’s Steensgard’s

WRAP-UP

	Slide 1: Exercise #20
	Slide 2: Administrivia and Announcements
	Slide 3: Points-To Analysis
	Slide 4: Class Progress
	Slide 5: Last Time: Interprocedural AnalysiS
	Slide 6: Last Time: Gmod & GREF Computation
	Slide 7: Last Time: Gmod & GREF Computation
	Slide 8: Last Time: Gmod & GREF Computation
	Slide 9: Last Time: Gmod & GREF Computation
	Slide 10: Overview
	Slide 11: Back to Dataflow
	Slide 12: Lecture Outline
	Slide 13: Pointers: Love to Hate ‘EM
	Slide 14: “Easy” Solution: Dataflow for May-Point
	Slide 15: Lecture Outline
	Slide 16: Subset Constraints
	Slide 17: Subset Constraints
	Slide 18: Subset Constraints
	Slide 19: Another Example
	Slide 20: Solving Constraints
	Slide 21: Overhead
	Slide 22: Lecture Outline
	Slide 23: An alternative Approach
	Slide 24: Equality Constraints
	Slide 25: Equality Constraints
	Slide 26: Equality Constraints
	Slide 27: Wrap-up

