
EXERCISE #20
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POINTS-TO ANALYSIS REVIEW

Write your name and answer the following on a piece of paper

Draw the exploded supergraph for the following program:



ADMINISTRIVIA
AND 
ANNOUNCEMENTS



POINTS-TO ANALYSIS
EECS 677: Software Security Evaluation

Drew Davidson



CLASS PROGRESS

ANALYSIS UNDERLYING OUR 
ENFORCEMENT NEEDS

4
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LAST TIME: INTERPROCEDURAL ANALYSIS
REVIEW: LAST LECTURE

CONSIDER THE EFFECT OF MULTIPLE 
FUNCTIONS

Simplistic

– Function overturn all global / aliased facts

Supergraph / Context String

– 1-CFA (use a call-chain of 1)

Summary Information

- Use GMOD and GREF to cut down on imprecision
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LAST TIME: GMOD & GREF COMPUTATION
REVIEW: LAST LECTURE

GLOBALS ONLY
Step 1

Compute IMOD and IREF

Step 2

Build (simple) call graph

Step 3

Collapse Cycles

Step 4

Solve a fixpoint problem

Add a new exit node (and add an edge n → exit 

for each node n with no outgoing edge.

A lattice element is a set of (global) variables.

The lattice meet is set union.

The "initial" dataflow fact for both GMOD and GREF (the 

fact that holds at the exit node) is the empty set.

for all nodes n, the dataflow functions for n are:

GMOD: fn(S) = S U IMOD(n)

GREF: fn(S) = S U IREF(n)
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LAST TIME: GMOD & GREF COMPUTATION
REVIEW: LAST LECTURE

GLOBALS, LOCALS & VALUE-PASSING

Step 1

New IREF: include locals 

and formals

Step 2

Build call-site multigraph

Step 3

Collapse Cycles

Step 3

Solve a fixpoint problem

GREF will change, GMOD doesn’t need to change

GREF(n) = (U all GREF(s) s.t. s is a call site in n) U IREF(n) 

GREF(s) = GREF(called node m) with all formals mapped 

back to the corresponding actuals 

Init all node GREF sets to their IREF sets

Init all call site GREF sets to empty

Put all nodes and call sites on a worklist

Iterate until the worklist is empty. 

Each time a node n is removed from the worklist, its current GREF set 

is computed. If that set doesn't match its previous value, then add all 

call sites to n to the worklist (if not already there). 

Similarly, each time a call site s is removed from the worklist, its 

current GREF set is computed. If that set doesn't match its previous 

value, then the node that contains s is added to the worklist (if not 

already there). 
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LAST TIME: GMOD & GREF COMPUTATION
REVIEW: LAST LECTURE

GLOBALS, LOCALS & VALUE-PASSING

GREF will change, GMOD doesn’t need to change

Init all node GREF sets to their IREF sets

Init all call site GREF sets to empty

Put all nodes and call sites on a worklist

Iterate until the worklist is empty. 

Each time a node n is removed from the worklist, its 

current GREF set is computed. If that set doesn't 

match its previous value, then add all call sites to n to 

the worklist (if not present). 

Each time a call site s is removed from the worklist, 

its current GREF set is computed. If that set doesn't 

match its previous value, then the node that 

contains s is added to the worklist (if not present). 
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LAST TIME: GMOD & GREF COMPUTATION
REVIEW: LAST LECTURE

GLOBALS, LOCALS & VALUE-PASSING

GREF will change, GMOD doesn’t need to change

void main() { 

S1: call a(v1)

} 

void a( f1 ) { 

S2: call b(v2, v3)

S3: call b(v4, v5)

} 

void b( f2, f3 ) { 

  print f3;

S4: call b(g1, g2)

} 

node or 

call site

GREF 

set

main g2

a g2, v3, v5

b f3, g2

s1 g2

s2 v3, g2

s3 v5, g2

s4 g2

main

IREF = { }

s1

a

IREF = { }

s2   s3

b

IREF = {f3}

s4

Init all node GREF sets to their IREF sets

Init all call site GREF sets to empty

Put all nodes and call sites on a worklist

Iterate until the worklist is empty. 

Each time a node n is removed from the worklist, its 

current GREF set is computed. If that set doesn't 

match its previous value, then add all call sites to n to 

the worklist (if not present). 

Each time a call site s is removed from the worklist, 

its current GREF set is computed. If that set doesn't 

match its previous value, then the node that 

contains s is added to the worklist (if not present). 



OVERVIEW

WE’VE SEEN THE NECESSITY OF MULTI-
FUNCTION ANALYSIS IN REAL-WORLD 
PROGRAMS

TIME TO CONSIDER HOW IT IS DONE 
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BACK TO DATAFLOW
INTERPROCEDURAL ANALYSIS

What is the effect of 
mystery on x’s taintedness?

What are the (possible) 
values of a and gbl?



LECTURE OUTLINE

• May-point v Must-point

• Andersen’s Analysis

• Steensgard’s Analysis
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POINTERS: LOVE TO HATE ‘EM
MAY-POINT AND MUST-POINT
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“EASY” SOLUTION: DATAFLOW FOR MAY-POINT
MAY-POINT AND MUST-POINT



LECTURE OUTLINE

• May-point v Must-point

• Andersen’s Analysis

• Steensgard’s Analysis
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SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS

p = &a;

q = p;

p = &b;

r = p;

Program

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints
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SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS
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SUBSET CONSTRAINTS
ANDERSEN’S ANALYSIS

p = &a;

q = p;

p = &b;

r = p;

p ⊇ {a}

q ⊇ p

p ⊇ {b}

r ⊇ p

pts(p) = ∅
pts(q) = ∅
pts(r) = ∅
pts(a) = ∅
pts(b) = ∅

pts(p) = {a,b}

pts(q) = {a,b}

pts(r) = {a,b}

pts(a) = ∅
pts(b) = ∅

Initial FinalConstraintsProgram

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints
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ANOTHER EXAMPLE
ANDERSEN’S ANALYSIS

p ⊇ {a} 

q ⊇ {b}

*p ⊇ q

r ⊇ {c}

s ⊇ p 

t ⊇ *p

*s ⊇ r

Initial FinalConstraintsProgram

A FLOW-INSENSITIVE ALGORITHM

Each statement adds a constraint over the points-to sets

End up with a (solvable) system of constraints

p = &a

q = &b

*p = q;

r = &c;

s = p;

t = *p;

*s = r;

pts(p) = { a }

pts(q) = { b }

pts(r) = { c }

pts(s) = ∅
pts(t) = ∅ 

pts(a) = ∅
pts(b) = ∅
pts(c) = ∅

pts(p) = { a }

pts(q) = { b }

pts(r) = { c }

pts(s) = { a }

pts(t) = { b, c }

pts(a) = { b, c } 

pts(b) = ∅
pts(c) = ∅
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SOLVING CONSTRAINTS
ANDERSEN’S ANALYSIS

Graph closure on the subset relation
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OVERHEAD
ANDERSEN’S ANALYSIS

WORST CASE: CUBIC TIME

That’s not great

OPTIMIZATION: CYCLE ELIMINATION

Detect and collapse SCCs in the points-to relation



LECTURE OUTLINE

• May-point v Must-point

• Andersen’s Analysis

• Steensgard’s Analysis
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AN ALTERNATIVE APPROACH
STEENSGARD’S  ANALYSIS

AIM FOR NEAR-LINEAR-TIME POINTS-TO ANALYSIS

Going to require us to reduce our search-space somewhat 

INTUITION: EQUALITY CONSTRAINTS

Do away with the notion of subsets
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EQUALITY CONSTRAINTS
STEENSGARD’S  ANALYSIS
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EQUALITY CONSTRAINTS
STEENSGARD’S  ANALYSIS

a,b,cp,qm r

a,bpm r cq

a,bpm r

a,bpm

a,bp

ap

p = &a

p = &b

m = &p

r = *m

q = &c

m = &q
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EQUALITY CONSTRAINTS
STEENSGARD’S  ANALYSIS

Andersen’s Steensgard’s



WRAP-UP
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